亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accommodating Time-Varying Heterogeneity in Risk Estimation under the Cox Model: A Transfer Learning Approach

JavaScript 计算机科学 缩放 特征(语言学) 估计 人工智能 算法 程序设计语言 镜头(地质) 语言学 石油工程 工程类 哲学 经济 管理
作者
Ziyi Li,Yu Shen,Jing Ning
标识
DOI:10.1080/01621459.2023.2210336
摘要

Transfer learning has attracted increasing attention in recent years for adaptively borrowing information across different data cohorts in various settings. Cancer registries have been widely used in clinical research because of their easy accessibility and large sample size. Our method is motivated by the question of how to utilize cancer registry data as a complement to improve the estimation precision of individual risks of death for inflammatory breast cancer (IBC) patients at The University of Texas MD Anderson Cancer Center. When transferring information for risk estimation based on the cancer registries (i.e., source cohort) to a single cancer center (i.e., target cohort), time-varying population heterogeneity needs to be appropriately acknowledged. However, there is no literature on how to adaptively transfer knowledge on risk estimation with time-to-event data from the source cohort to the target cohort while adjusting for time-varying differences in event risks between the two sources. Our goal is to address this statistical challenge by developing a transfer learning approach under the Cox proportional hazards model. To allow data-adaptive levels of information borrowing, we impose Lasso penalties on the discrepancies in regression coefficients and baseline hazard functions between the two cohorts, which are jointly solved in the proposed transfer learning algorithm. As shown in the extensive simulation studies, the proposed method yields more precise individualized risk estimation than using the target cohort alone. Meanwhile, our method demonstrates satisfactory robustness against cohort differences compared with the method that directly combines the target and source data in the Cox model. We develop a more accurate risk estimation model for the MD Anderson IBC cohort given various treatment and baseline covariates, while adaptively borrowing information from the National Cancer Database to improve risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺的白山完成签到 ,获得积分10
3秒前
文艺的白山关注了科研通微信公众号
8秒前
45秒前
生信精准科研完成签到,获得积分10
47秒前
51秒前
1分钟前
1分钟前
1分钟前
聪聪great发布了新的文献求助10
1分钟前
Owen应助复杂的鑫磊采纳,获得10
1分钟前
酷波er应助聪聪great采纳,获得10
1分钟前
CipherSage应助gabauser采纳,获得10
1分钟前
JrPaleo101应助dahai采纳,获得10
2分钟前
pp完成签到 ,获得积分0
2分钟前
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
gabauser发布了新的文献求助10
2分钟前
打打应助虞鱼瑜采纳,获得10
2分钟前
2分钟前
聪聪great发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助聪聪great采纳,获得10
3分钟前
三水发布了新的文献求助10
3分钟前
haihai蒂发布了新的文献求助10
3分钟前
3分钟前
juejue333完成签到,获得积分10
4分钟前
kuoping完成签到,获得积分10
4分钟前
明亮的冰香完成签到 ,获得积分10
4分钟前
JrPaleo101应助Sience采纳,获得10
4分钟前
5分钟前
5分钟前
张可完成签到 ,获得积分10
5分钟前
天天快乐应助科研通管家采纳,获得30
5分钟前
seayoa发布了新的文献求助10
7分钟前
mashibeo完成签到,获得积分10
7分钟前
seayoa完成签到,获得积分10
7分钟前
8分钟前
施含莲发布了新的文献求助10
8分钟前
华仔应助施含莲采纳,获得10
8分钟前
zhang发布了新的文献求助10
8分钟前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3275098
求助须知:如何正确求助?哪些是违规求助? 2914160
关于积分的说明 8371577
捐赠科研通 2584930
什么是DOI,文献DOI怎么找? 1407309
科研通“疑难数据库(出版商)”最低求助积分说明 656863
邀请新用户注册赠送积分活动 637356