A Cost-Effective Sequential Route Recommender System for Taxi Drivers

计算机科学 出租车 推荐系统 北京 搜索引擎索引 递归(计算机科学) 运筹学 人工智能 机器学习 算法 运输工程 中国 法学 政治学 工程类
作者
Junming Liu,Mingfei Teng,Weiwei Chen,Hui Xiong
出处
期刊:Informs Journal on Computing 卷期号:35 (5): 1098-1119 被引量:1
标识
DOI:10.1287/ijoc.2021.0112
摘要

This paper develops a cost-effective sequential route recommender system to provide real-time routing recommendations for vacant taxis searching for the next passenger. We propose a prediction-and-optimization framework to recommend the searching route that maximizes the expected profit of the next successful passenger pickup based on the dynamic taxi demand-supply distribution. Specifically, this system features a deep learning-based predictor that dynamically predicts the passenger pickup probability on a road segment and a recursive searching algorithm that recommends the optimal searching route. The predictor integrates a graph convolution network (GCN) to capture the spatial distribution and a long short-term memory (LSTM) to capture the temporal dynamics of taxi demand and supply. The GCN-LSTM model can accurately predict the pickup probability on a road segment with the consideration of potential taxi oversupply. Then, the dynamic distribution of pickup probability is fed into the route optimization algorithm to recommend the optimal searching routes sequentially as route inquiries emerge in the system. The recursion tree-based route optimization algorithm can significantly reduce the computational time and provide the optimal routes within seconds for real-time implementation. Finally, extensive experiments using Beijing Taxi GPS data demonstrate the effectiveness and efficiency of the proposed recommender system. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was partially supported by the Hong Kong Research Grants Council [Grants CityU 21500220, CityU 11504322] and the National Natural Science Foundation of China [Grant 72201222]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2021.0112 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0112 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助跳跳糖采纳,获得10
刚刚
2秒前
李爱国应助现代访云采纳,获得10
4秒前
Singularity应助紧张的如南采纳,获得10
6秒前
asd发布了新的文献求助10
7秒前
我是老大应助yangy采纳,获得10
8秒前
11秒前
科研通AI2S应助虞无声采纳,获得50
11秒前
瓜6完成签到 ,获得积分20
12秒前
神勇的冬瓜完成签到,获得积分10
14秒前
dream完成签到 ,获得积分10
14秒前
花雨黎伞发布了新的文献求助10
16秒前
无奈绮琴完成签到,获得积分10
16秒前
Owen应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得20
17秒前
Phosphene应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
18秒前
18秒前
18秒前
xl完成签到 ,获得积分10
18秒前
华仔应助Navial30采纳,获得10
19秒前
科研通AI2S应助yuqinghui98采纳,获得10
21秒前
23秒前
29秒前
AE关闭了AE文献求助
30秒前
30秒前
degster完成签到,获得积分10
33秒前
欣欣完成签到,获得积分10
33秒前
花雨黎伞完成签到,获得积分10
34秒前
Navial30发布了新的文献求助10
35秒前
junjieLIU完成签到,获得积分10
35秒前
38秒前
39秒前
40秒前
直率无春完成签到,获得积分10
43秒前
英勇羿发布了新的文献求助10
45秒前
46秒前
白_完成签到,获得积分10
47秒前
阿媛呐完成签到,获得积分10
48秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3112230
求助须知:如何正确求助?哪些是违规求助? 2762411
关于积分的说明 7670575
捐赠科研通 2417546
什么是DOI,文献DOI怎么找? 1283208
科研通“疑难数据库(出版商)”最低求助积分说明 619371
版权声明 599583