Multi-Modal 3D Object Detection in Autonomous Driving: A Survey

保险丝(电气) 计算机科学 传感器融合 情态动词 人工智能 任务(项目管理) 目标检测 计算机视觉 一套 分割 工程类 系统工程 历史 电气工程 考古 化学 高分子化学
作者
Yingjie Wang,Qiuyu Mao,Hanqi Zhu,Jiajun Deng,Yu Zhang,Jianmin Ji,Houqiang Li,Yanyong Zhang
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:131 (8): 2122-2152 被引量:49
标识
DOI:10.1007/s11263-023-01784-z
摘要

The past decade has witnessed the rapid development of autonomous driving systems. However, it remains a daunting task to achieve full autonomy, especially when it comes to understanding the ever-changing, complex driving scenes. To alleviate the difficulty of perception, self-driving vehicles are usually equipped with a suite of sensors (e.g., cameras, LiDARs), hoping to capture the scenes with overlapping perspectives to minimize blind spots. Fusing these data streams and exploiting their complementary properties is thus rapidly becoming the current trend. Nonetheless, combining data that are captured by different sensors with drastically different ranging/ima-ging mechanisms is not a trivial task; instead, many factors need to be considered and optimized. If not careful, data from one sensor may act as noises to data from another sensor, with even poorer results by fusing them. Thus far, there has been no in-depth guidelines to designing the multi-modal fusion based 3D perception algorithms. To fill in the void and motivate further investigation, this survey conducts a thorough study of tens of recent deep learning based multi-modal 3D detection networks (with a special emphasis on LiDAR-camera fusion), focusing on their fusion stage (i.e., when to fuse), fusion inputs (i.e., what to fuse), and fusion granularity (i.e., how to fuse). These important design choices play a critical role in determining the performance of the fusion algorithm. In this survey, we first introduce the background of popular sensors used for self-driving, their data properties, and the corresponding object detection algorithms. Next, we discuss existing datasets that can be used for evaluating multi-modal 3D object detection algorithms. Then we present a review of multi-modal fusion based 3D detection networks, taking a close look at their fusion stage, fusion input and fusion granularity, and how these design choices evolve with time and technology. After the review, we discuss open challenges as well as possible solutions. We hope that this survey can help researchers to get familiar with the field and embark on investigations in the area of multi-modal 3D object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助姚序东采纳,获得10
2秒前
刻苦的雨莲完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
NexusExplorer应助qsdxasc采纳,获得10
4秒前
zz完成签到,获得积分10
4秒前
yoyo完成签到,获得积分10
4秒前
mao完成签到,获得积分10
4秒前
诸葛朝雪完成签到,获得积分10
5秒前
无限大门完成签到,获得积分10
5秒前
hhh完成签到,获得积分10
6秒前
嘿嘿完成签到 ,获得积分10
7秒前
sbc驳回了Orange应助
7秒前
科研小虫完成签到,获得积分10
8秒前
8秒前
嘿嘿发布了新的文献求助10
9秒前
陈梓meng发布了新的文献求助10
9秒前
日富一日完成签到,获得积分10
9秒前
科研通AI6应助你好采纳,获得150
9秒前
9秒前
英吉利25发布了新的文献求助10
9秒前
刘可以完成签到,获得积分10
11秒前
zerotwo完成签到,获得积分10
13秒前
jackzzs完成签到,获得积分10
14秒前
14秒前
眰晌完成签到,获得积分10
14秒前
传统的孤丝完成签到 ,获得积分10
15秒前
Vaseegara完成签到 ,获得积分10
15秒前
xm完成签到,获得积分10
16秒前
16秒前
姚序东发布了新的文献求助10
17秒前
小李爱查文献完成签到,获得积分20
17秒前
pe完成签到,获得积分10
19秒前
hhh完成签到,获得积分10
19秒前
zzzddd完成签到,获得积分10
21秒前
21秒前
22秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339603
求助须知:如何正确求助?哪些是违规求助? 4476342
关于积分的说明 13931317
捐赠科研通 4371894
什么是DOI,文献DOI怎么找? 2402155
邀请新用户注册赠送积分活动 1395071
关于科研通互助平台的介绍 1367068