Multi-Modal 3D Object Detection in Autonomous Driving: A Survey

保险丝(电气) 计算机科学 传感器融合 情态动词 人工智能 任务(项目管理) 目标检测 计算机视觉 一套 分割 工程类 系统工程 历史 电气工程 考古 化学 高分子化学
作者
Yingjie Wang,Qiuyu Mao,Hanqi Zhu,Jiajun Deng,Yu Zhang,Jianmin Ji,Houqiang Li,Yanyong Zhang
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:131 (8): 2122-2152 被引量:49
标识
DOI:10.1007/s11263-023-01784-z
摘要

The past decade has witnessed the rapid development of autonomous driving systems. However, it remains a daunting task to achieve full autonomy, especially when it comes to understanding the ever-changing, complex driving scenes. To alleviate the difficulty of perception, self-driving vehicles are usually equipped with a suite of sensors (e.g., cameras, LiDARs), hoping to capture the scenes with overlapping perspectives to minimize blind spots. Fusing these data streams and exploiting their complementary properties is thus rapidly becoming the current trend. Nonetheless, combining data that are captured by different sensors with drastically different ranging/ima-ging mechanisms is not a trivial task; instead, many factors need to be considered and optimized. If not careful, data from one sensor may act as noises to data from another sensor, with even poorer results by fusing them. Thus far, there has been no in-depth guidelines to designing the multi-modal fusion based 3D perception algorithms. To fill in the void and motivate further investigation, this survey conducts a thorough study of tens of recent deep learning based multi-modal 3D detection networks (with a special emphasis on LiDAR-camera fusion), focusing on their fusion stage (i.e., when to fuse), fusion inputs (i.e., what to fuse), and fusion granularity (i.e., how to fuse). These important design choices play a critical role in determining the performance of the fusion algorithm. In this survey, we first introduce the background of popular sensors used for self-driving, their data properties, and the corresponding object detection algorithms. Next, we discuss existing datasets that can be used for evaluating multi-modal 3D object detection algorithms. Then we present a review of multi-modal fusion based 3D detection networks, taking a close look at their fusion stage, fusion input and fusion granularity, and how these design choices evolve with time and technology. After the review, we discuss open challenges as well as possible solutions. We hope that this survey can help researchers to get familiar with the field and embark on investigations in the area of multi-modal 3D object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王立辉发布了新的文献求助400
刚刚
1秒前
1秒前
Li完成签到,获得积分10
2秒前
搜集达人应助bob采纳,获得10
2秒前
2秒前
零度寂寞3166完成签到,获得积分10
2秒前
小曾完成签到,获得积分10
2秒前
2秒前
七分侥幸完成签到,获得积分10
2秒前
研友_LBaRl8完成签到,获得积分10
2秒前
慈祥的煎蛋完成签到,获得积分20
3秒前
3秒前
4秒前
波波完成签到 ,获得积分10
4秒前
gpxhyfzqz发布了新的文献求助30
4秒前
雪123发布了新的文献求助10
4秒前
4秒前
打打应助奋斗觅海采纳,获得10
5秒前
研友_8oYg4n完成签到,获得积分10
6秒前
羊成木木发布了新的文献求助10
6秒前
6秒前
6秒前
优雅颜完成签到 ,获得积分10
7秒前
lkl发布了新的文献求助10
7秒前
炙热嘉懿发布了新的文献求助10
7秒前
ffff发布了新的文献求助10
7秒前
专注ing发布了新的文献求助10
7秒前
Orange应助高高哑铃采纳,获得10
7秒前
7秒前
哈哈发布了新的文献求助10
8秒前
8秒前
8秒前
研友_8oYg4n发布了新的文献求助10
9秒前
金先生完成签到,获得积分10
9秒前
奋斗尔安发布了新的文献求助10
9秒前
余杭村王小虎完成签到,获得积分10
10秒前
10秒前
土豆完成签到,获得积分10
10秒前
Ruby发布了新的文献求助10
10秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440678
求助须知:如何正确求助?哪些是违规求助? 3037173
关于积分的说明 8967721
捐赠科研通 2725656
什么是DOI,文献DOI怎么找? 1495057
科研通“疑难数据库(出版商)”最低求助积分说明 691066
邀请新用户注册赠送积分活动 687754