亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Modal 3D Object Detection in Autonomous Driving: A Survey

保险丝(电气) 计算机科学 传感器融合 情态动词 人工智能 任务(项目管理) 目标检测 计算机视觉 一套 分割 工程类 系统工程 历史 电气工程 考古 化学 高分子化学
作者
Yingjie Wang,Qiuyu Mao,Hanqi Zhu,Jiajun Deng,Yu Zhang,Jianmin Ji,Houqiang Li,Yanyong Zhang
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:131 (8): 2122-2152 被引量:49
标识
DOI:10.1007/s11263-023-01784-z
摘要

The past decade has witnessed the rapid development of autonomous driving systems. However, it remains a daunting task to achieve full autonomy, especially when it comes to understanding the ever-changing, complex driving scenes. To alleviate the difficulty of perception, self-driving vehicles are usually equipped with a suite of sensors (e.g., cameras, LiDARs), hoping to capture the scenes with overlapping perspectives to minimize blind spots. Fusing these data streams and exploiting their complementary properties is thus rapidly becoming the current trend. Nonetheless, combining data that are captured by different sensors with drastically different ranging/ima-ging mechanisms is not a trivial task; instead, many factors need to be considered and optimized. If not careful, data from one sensor may act as noises to data from another sensor, with even poorer results by fusing them. Thus far, there has been no in-depth guidelines to designing the multi-modal fusion based 3D perception algorithms. To fill in the void and motivate further investigation, this survey conducts a thorough study of tens of recent deep learning based multi-modal 3D detection networks (with a special emphasis on LiDAR-camera fusion), focusing on their fusion stage (i.e., when to fuse), fusion inputs (i.e., what to fuse), and fusion granularity (i.e., how to fuse). These important design choices play a critical role in determining the performance of the fusion algorithm. In this survey, we first introduce the background of popular sensors used for self-driving, their data properties, and the corresponding object detection algorithms. Next, we discuss existing datasets that can be used for evaluating multi-modal 3D object detection algorithms. Then we present a review of multi-modal fusion based 3D detection networks, taking a close look at their fusion stage, fusion input and fusion granularity, and how these design choices evolve with time and technology. After the review, we discuss open challenges as well as possible solutions. We hope that this survey can help researchers to get familiar with the field and embark on investigations in the area of multi-modal 3D object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Innogen完成签到,获得积分10
4秒前
汉堡包应助科研通管家采纳,获得10
44秒前
shhoing应助科研通管家采纳,获得10
44秒前
Everything完成签到,获得积分10
46秒前
2分钟前
2分钟前
2分钟前
Yikao完成签到 ,获得积分10
3分钟前
ZIJUNZHAO完成签到 ,获得积分10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
总是很简单完成签到 ,获得积分10
4分钟前
Ykaor完成签到 ,获得积分10
5分钟前
古铜完成签到 ,获得积分10
5分钟前
5分钟前
乐正文涛发布了新的文献求助10
5分钟前
ajing完成签到,获得积分10
5分钟前
QYQ完成签到 ,获得积分10
5分钟前
msk完成签到 ,获得积分10
5分钟前
乐正怡完成签到 ,获得积分10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
FMHChan完成签到,获得积分10
7分钟前
cy0824完成签到 ,获得积分10
7分钟前
wodetaiyangLLL完成签到 ,获得积分10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
8分钟前
铭铭完成签到 ,获得积分10
9分钟前
FashionBoy应助科研通管家采纳,获得10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
科研通AI6应助科研通管家采纳,获得10
10分钟前
Attaa完成签到,获得积分10
12分钟前
12分钟前
木木发布了新的文献求助10
12分钟前
12分钟前
12分钟前
gexzygg应助科研通管家采纳,获得10
12分钟前
gexzygg应助科研通管家采纳,获得10
12分钟前
shhoing应助科研通管家采纳,获得10
12分钟前
gexzygg应助科研通管家采纳,获得10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561535
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587966
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461557