Multi-Modal 3D Object Detection in Autonomous Driving: A Survey

保险丝(电气) 计算机科学 传感器融合 情态动词 人工智能 任务(项目管理) 目标检测 计算机视觉 一套 分割 工程类 系统工程 历史 电气工程 考古 化学 高分子化学
作者
Yingjie Wang,Qiuyu Mao,Hanqi Zhu,Jiajun Deng,Yu Zhang,Jianmin Ji,Houqiang Li,Yanyong Zhang
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
卷期号:131 (8): 2122-2152 被引量:49
标识
DOI:10.1007/s11263-023-01784-z
摘要

The past decade has witnessed the rapid development of autonomous driving systems. However, it remains a daunting task to achieve full autonomy, especially when it comes to understanding the ever-changing, complex driving scenes. To alleviate the difficulty of perception, self-driving vehicles are usually equipped with a suite of sensors (e.g., cameras, LiDARs), hoping to capture the scenes with overlapping perspectives to minimize blind spots. Fusing these data streams and exploiting their complementary properties is thus rapidly becoming the current trend. Nonetheless, combining data that are captured by different sensors with drastically different ranging/ima-ging mechanisms is not a trivial task; instead, many factors need to be considered and optimized. If not careful, data from one sensor may act as noises to data from another sensor, with even poorer results by fusing them. Thus far, there has been no in-depth guidelines to designing the multi-modal fusion based 3D perception algorithms. To fill in the void and motivate further investigation, this survey conducts a thorough study of tens of recent deep learning based multi-modal 3D detection networks (with a special emphasis on LiDAR-camera fusion), focusing on their fusion stage (i.e., when to fuse), fusion inputs (i.e., what to fuse), and fusion granularity (i.e., how to fuse). These important design choices play a critical role in determining the performance of the fusion algorithm. In this survey, we first introduce the background of popular sensors used for self-driving, their data properties, and the corresponding object detection algorithms. Next, we discuss existing datasets that can be used for evaluating multi-modal 3D object detection algorithms. Then we present a review of multi-modal fusion based 3D detection networks, taking a close look at their fusion stage, fusion input and fusion granularity, and how these design choices evolve with time and technology. After the review, we discuss open challenges as well as possible solutions. We hope that this survey can help researchers to get familiar with the field and embark on investigations in the area of multi-modal 3D object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scott_zip完成签到 ,获得积分10
2秒前
陈少华发布了新的文献求助200
3秒前
勤恳的书文完成签到 ,获得积分10
3秒前
小李完成签到 ,获得积分10
3秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
3秒前
yangjinru完成签到 ,获得积分10
3秒前
Iwan发布了新的文献求助10
5秒前
淡定的忆山完成签到 ,获得积分10
8秒前
风中的蜜蜂完成签到,获得积分10
9秒前
尔尔完成签到 ,获得积分10
11秒前
濠哥妈咪完成签到,获得积分10
12秒前
南风知我意完成签到,获得积分10
13秒前
xiaofeng5838完成签到,获得积分10
13秒前
禾苗完成签到 ,获得积分10
18秒前
SJT完成签到,获得积分10
19秒前
LIKUN完成签到,获得积分10
20秒前
HY完成签到,获得积分10
21秒前
殷勤的凝海完成签到 ,获得积分10
23秒前
桐桐应助Iwan采纳,获得10
23秒前
Dr_Chu完成签到 ,获得积分10
25秒前
dbdxyty完成签到,获得积分10
26秒前
爱科研的小虞完成签到 ,获得积分10
27秒前
威威完成签到,获得积分10
28秒前
小华完成签到 ,获得积分10
31秒前
木子26年要毕业完成签到 ,获得积分10
34秒前
HE完成签到 ,获得积分10
34秒前
36秒前
双青豆完成签到 ,获得积分10
37秒前
薄荷梨完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
42秒前
Luckyhai完成签到,获得积分10
42秒前
feihua1完成签到 ,获得积分10
47秒前
翁雁丝完成签到 ,获得积分10
50秒前
444完成签到,获得积分10
50秒前
成就的冰绿完成签到,获得积分10
50秒前
Dsunflower完成签到 ,获得积分10
50秒前
共享精神应助陈少华采纳,获得10
52秒前
鹿c3完成签到,获得积分10
54秒前
1分钟前
Loong完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008786
求助须知:如何正确求助?哪些是违规求助? 3548464
关于积分的说明 11298867
捐赠科研通 3283080
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220