Multi-Modal 3D Object Detection in Autonomous Driving: A Survey

保险丝(电气) 计算机科学 传感器融合 情态动词 人工智能 任务(项目管理) 目标检测 计算机视觉 一套 分割 工程类 系统工程 历史 电气工程 考古 化学 高分子化学
作者
Yingjie Wang,Qiuyu Mao,Hanqi Zhu,Jiajun Deng,Yu Zhang,Jianmin Ji,Houqiang Li,Yanyong Zhang
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
卷期号:131 (8): 2122-2152 被引量:49
标识
DOI:10.1007/s11263-023-01784-z
摘要

The past decade has witnessed the rapid development of autonomous driving systems. However, it remains a daunting task to achieve full autonomy, especially when it comes to understanding the ever-changing, complex driving scenes. To alleviate the difficulty of perception, self-driving vehicles are usually equipped with a suite of sensors (e.g., cameras, LiDARs), hoping to capture the scenes with overlapping perspectives to minimize blind spots. Fusing these data streams and exploiting their complementary properties is thus rapidly becoming the current trend. Nonetheless, combining data that are captured by different sensors with drastically different ranging/ima-ging mechanisms is not a trivial task; instead, many factors need to be considered and optimized. If not careful, data from one sensor may act as noises to data from another sensor, with even poorer results by fusing them. Thus far, there has been no in-depth guidelines to designing the multi-modal fusion based 3D perception algorithms. To fill in the void and motivate further investigation, this survey conducts a thorough study of tens of recent deep learning based multi-modal 3D detection networks (with a special emphasis on LiDAR-camera fusion), focusing on their fusion stage (i.e., when to fuse), fusion inputs (i.e., what to fuse), and fusion granularity (i.e., how to fuse). These important design choices play a critical role in determining the performance of the fusion algorithm. In this survey, we first introduce the background of popular sensors used for self-driving, their data properties, and the corresponding object detection algorithms. Next, we discuss existing datasets that can be used for evaluating multi-modal 3D object detection algorithms. Then we present a review of multi-modal fusion based 3D detection networks, taking a close look at their fusion stage, fusion input and fusion granularity, and how these design choices evolve with time and technology. After the review, we discuss open challenges as well as possible solutions. We hope that this survey can help researchers to get familiar with the field and embark on investigations in the area of multi-modal 3D object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sonicker完成签到 ,获得积分10
刚刚
鸢尾不是板蓝根完成签到,获得积分10
1秒前
酸菜完成签到,获得积分10
1秒前
乐开欣完成签到 ,获得积分10
1秒前
科研通AI6应助科研小白采纳,获得10
1秒前
2秒前
2秒前
ABC完成签到,获得积分10
3秒前
4秒前
酸菜发布了新的文献求助10
4秒前
细心的日记本完成签到,获得积分10
5秒前
Ayn完成签到 ,获得积分10
5秒前
5秒前
ww发布了新的文献求助10
5秒前
Ava应助乔乔兔采纳,获得10
5秒前
6秒前
Raymond应助果粒多采纳,获得10
6秒前
乐乐应助啾啾采纳,获得10
6秒前
Yolyna完成签到,获得积分10
6秒前
fansy完成签到,获得积分10
7秒前
sweat发布了新的文献求助10
7秒前
8秒前
lyjine发布了新的文献求助10
8秒前
8秒前
zz完成签到,获得积分10
8秒前
9秒前
9秒前
Rachel8023完成签到,获得积分10
10秒前
科yt完成签到,获得积分10
10秒前
李大柱发布了新的文献求助10
10秒前
丰富的正豪完成签到,获得积分10
10秒前
10秒前
SciGPT应助蒲胜蓝采纳,获得10
12秒前
rwSSS关注了科研通微信公众号
12秒前
lhcshuang发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
个性的振家完成签到,获得积分10
12秒前
13秒前
乔乔兔完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615619
求助须知:如何正确求助?哪些是违规求助? 4019269
关于积分的说明 12441658
捐赠科研通 3702297
什么是DOI,文献DOI怎么找? 2041522
邀请新用户注册赠送积分活动 1074192
科研通“疑难数据库(出版商)”最低求助积分说明 957826