Online Learning of Neural Surface Light Fields Alongside Real-Time Incremental 3D Reconstruction

计算机科学 渲染(计算机图形) 人工智能 机器人学 计算机视觉 可视化 机器人 三维重建 忠诚 电信
作者
Yijun Yuan,Andreas Nüchter
出处
期刊:IEEE robotics and automation letters 卷期号:8 (6): 3844-3851
标识
DOI:10.1109/lra.2023.3273516
摘要

Immersive novel view generation is an important technology in the field of graphics and has recently also received attention for operator-based human-robot interaction. However, the involved training is time-consuming, and thus the current test scope is majorly on object capturing. This limits the usage of related models in the robotics community for 3D reconstruction since robots (1) usually only capture a very small range of view directions to surfaces that cause arbitrary predictions on unseen, novel direction, (2) requires real-time algorithms, and (3) work with growing scenes, e.g., in robotic exploration. The letter proposes a novel Neural Surface Light Fields model that copes with the small range of view directions while producing a good result in unseen directions. Exploiting recent encoding techniques, the training of our model is highly efficient. In addition, we design Multiple Asynchronous Neural Agents (MANA), a universal framework to learn each small region in parallel for large-scale growing scenes. Our model learns online the Neural Surface Light Fields (NSLF) aside from real-time 3D reconstruction with a sequential data stream as the shared input. In addition to online training, our model also provides real-time rendering after completing the data stream for visualization. We implement experiments using well-known RGBD indoor datasets, showing the high flexibility to embed our model into real-time 3D reconstruction and demonstrating high-fidelity view synthesis for these scenes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歌儿发布了新的文献求助10
1秒前
1秒前
沐浠完成签到 ,获得积分10
1秒前
1秒前
夜离殇完成签到,获得积分10
1秒前
呆萌幼晴发布了新的文献求助10
2秒前
福尔摩曦发布了新的文献求助20
2秒前
文艺聪健完成签到,获得积分10
2秒前
2秒前
Sea_moon完成签到,获得积分10
2秒前
宋仔仔爱吃糖完成签到,获得积分10
3秒前
3秒前
超级大聪明完成签到,获得积分10
3秒前
猫猫啸日发布了新的文献求助10
3秒前
3秒前
ABC熊ABC发布了新的文献求助20
3秒前
小青椒应助英俊亦巧采纳,获得50
3秒前
3秒前
靓丽幻梅发布了新的文献求助10
3秒前
何跑跑完成签到 ,获得积分10
3秒前
4秒前
呆萌菲音完成签到,获得积分10
4秒前
神勇绮烟发布了新的文献求助10
4秒前
帅气的机器猫完成签到 ,获得积分10
4秒前
HZ发布了新的文献求助10
4秒前
脑洞疼应助优秀不愁采纳,获得10
4秒前
4秒前
熹微完成签到,获得积分10
5秒前
无颜猪完成签到,获得积分20
5秒前
5秒前
zzzzzzz完成签到 ,获得积分10
5秒前
优雅的从安完成签到,获得积分20
5秒前
一一完成签到,获得积分10
5秒前
勤劳寡妇完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
充电宝应助姜友舜采纳,获得10
6秒前
6秒前
董宇恒完成签到 ,获得积分10
6秒前
联合工程发布了新的文献求助10
6秒前
isaac217发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017