Online Learning of Neural Surface Light Fields Alongside Real-Time Incremental 3D Reconstruction

计算机科学 渲染(计算机图形) 人工智能 机器人学 计算机视觉 可视化 机器人 三维重建 忠诚 电信
作者
Yijun Yuan,Andreas Nüchter
出处
期刊:IEEE robotics and automation letters 卷期号:8 (6): 3844-3851
标识
DOI:10.1109/lra.2023.3273516
摘要

Immersive novel view generation is an important technology in the field of graphics and has recently also received attention for operator-based human-robot interaction. However, the involved training is time-consuming, and thus the current test scope is majorly on object capturing. This limits the usage of related models in the robotics community for 3D reconstruction since robots (1) usually only capture a very small range of view directions to surfaces that cause arbitrary predictions on unseen, novel direction, (2) requires real-time algorithms, and (3) work with growing scenes, e.g., in robotic exploration. The letter proposes a novel Neural Surface Light Fields model that copes with the small range of view directions while producing a good result in unseen directions. Exploiting recent encoding techniques, the training of our model is highly efficient. In addition, we design Multiple Asynchronous Neural Agents (MANA), a universal framework to learn each small region in parallel for large-scale growing scenes. Our model learns online the Neural Surface Light Fields (NSLF) aside from real-time 3D reconstruction with a sequential data stream as the shared input. In addition to online training, our model also provides real-time rendering after completing the data stream for visualization. We implement experiments using well-known RGBD indoor datasets, showing the high flexibility to embed our model into real-time 3D reconstruction and demonstrating high-fidelity view synthesis for these scenes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一禅完成签到 ,获得积分10
1秒前
漠雨寒灯发布了新的文献求助10
7秒前
合适的平安完成签到,获得积分10
8秒前
8秒前
10秒前
kk发布了新的文献求助10
11秒前
落落完成签到,获得积分20
12秒前
马子妍发布了新的文献求助10
14秒前
14秒前
噗噗完成签到,获得积分10
16秒前
kk完成签到,获得积分20
17秒前
Ryan完成签到,获得积分10
20秒前
许垲锋发布了新的文献求助10
21秒前
吴YB完成签到,获得积分10
21秒前
WJ完成签到,获得积分10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
spc68应助科研通管家采纳,获得10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
24秒前
24秒前
李健应助angelinazh采纳,获得10
24秒前
科研通AI6应助牙ya采纳,获得10
24秒前
27秒前
英姑应助西尔多采纳,获得10
27秒前
Somnolence咩完成签到,获得积分10
29秒前
29秒前
123完成签到,获得积分10
30秒前
jason发布了新的文献求助30
30秒前
31秒前
32秒前
善学以致用应助123采纳,获得10
34秒前
啦啦啦完成签到 ,获得积分10
36秒前
代传芬发布了新的文献求助10
36秒前
36秒前
zhoushishan发布了新的文献求助10
38秒前
38秒前
SciGPT应助roro熊采纳,获得10
40秒前
卤肉饭与石榴汁完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565514
求助须知:如何正确求助?哪些是违规求助? 4650580
关于积分的说明 14691851
捐赠科研通 4592480
什么是DOI,文献DOI怎么找? 2519651
邀请新用户注册赠送积分活动 1492028
关于科研通互助平台的介绍 1463244