Online Learning of Neural Surface Light Fields Alongside Real-Time Incremental 3D Reconstruction

计算机科学 渲染(计算机图形) 人工智能 机器人学 计算机视觉 可视化 机器人 三维重建 忠诚 电信
作者
Yijun Yuan,Andreas Nüchter
出处
期刊:IEEE robotics and automation letters 卷期号:8 (6): 3844-3851
标识
DOI:10.1109/lra.2023.3273516
摘要

Immersive novel view generation is an important technology in the field of graphics and has recently also received attention for operator-based human-robot interaction. However, the involved training is time-consuming, and thus the current test scope is majorly on object capturing. This limits the usage of related models in the robotics community for 3D reconstruction since robots (1) usually only capture a very small range of view directions to surfaces that cause arbitrary predictions on unseen, novel direction, (2) requires real-time algorithms, and (3) work with growing scenes, e.g., in robotic exploration. The letter proposes a novel Neural Surface Light Fields model that copes with the small range of view directions while producing a good result in unseen directions. Exploiting recent encoding techniques, the training of our model is highly efficient. In addition, we design Multiple Asynchronous Neural Agents (MANA), a universal framework to learn each small region in parallel for large-scale growing scenes. Our model learns online the Neural Surface Light Fields (NSLF) aside from real-time 3D reconstruction with a sequential data stream as the shared input. In addition to online training, our model also provides real-time rendering after completing the data stream for visualization. We implement experiments using well-known RGBD indoor datasets, showing the high flexibility to embed our model into real-time 3D reconstruction and demonstrating high-fidelity view synthesis for these scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迷路的八宝粥完成签到,获得积分10
4秒前
无私的以冬完成签到,获得积分10
4秒前
是但求其爱完成签到,获得积分10
4秒前
sybil发布了新的文献求助10
5秒前
5秒前
安详凡发布了新的文献求助10
5秒前
6秒前
末日的阳光完成签到 ,获得积分10
6秒前
liyuanhua发布了新的文献求助20
10秒前
桐桐应助DQY采纳,获得10
10秒前
英姑应助zyn采纳,获得10
11秒前
科研通AI2S应助末日的阳光采纳,获得10
11秒前
糖配坤关注了科研通微信公众号
16秒前
阡陌完成签到,获得积分10
18秒前
19秒前
橙子完成签到,获得积分10
19秒前
dal完成签到,获得积分10
21秒前
21秒前
脑洞疼应助科研进化中采纳,获得10
23秒前
九黎完成签到 ,获得积分10
23秒前
俊逸沅完成签到,获得积分10
28秒前
研友_5Y9775完成签到,获得积分20
30秒前
科研孙完成签到,获得积分10
31秒前
JUNJIU完成签到,获得积分10
37秒前
眼睛大樱桃完成签到,获得积分10
38秒前
糖配坤发布了新的文献求助10
39秒前
搬运工完成签到,获得积分10
40秒前
麦田的守望者完成签到,获得积分10
46秒前
婷婷发布了新的文献求助10
46秒前
坤坤完成签到,获得积分10
49秒前
董竹君完成签到,获得积分10
50秒前
Lucas应助jingzhang采纳,获得10
51秒前
54秒前
雪白凡双完成签到,获得积分10
55秒前
憨憨鱼完成签到,获得积分10
55秒前
57秒前
59秒前
1分钟前
Gying发布了新的文献求助10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159467
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804357