Online Learning of Neural Surface Light Fields Alongside Real-Time Incremental 3D Reconstruction

计算机科学 渲染(计算机图形) 人工智能 机器人学 计算机视觉 可视化 机器人 三维重建 忠诚 电信
作者
Yijun Yuan,Andreas Nüchter
出处
期刊:IEEE robotics and automation letters 卷期号:8 (6): 3844-3851
标识
DOI:10.1109/lra.2023.3273516
摘要

Immersive novel view generation is an important technology in the field of graphics and has recently also received attention for operator-based human-robot interaction. However, the involved training is time-consuming, and thus the current test scope is majorly on object capturing. This limits the usage of related models in the robotics community for 3D reconstruction since robots (1) usually only capture a very small range of view directions to surfaces that cause arbitrary predictions on unseen, novel direction, (2) requires real-time algorithms, and (3) work with growing scenes, e.g., in robotic exploration. The letter proposes a novel Neural Surface Light Fields model that copes with the small range of view directions while producing a good result in unseen directions. Exploiting recent encoding techniques, the training of our model is highly efficient. In addition, we design Multiple Asynchronous Neural Agents (MANA), a universal framework to learn each small region in parallel for large-scale growing scenes. Our model learns online the Neural Surface Light Fields (NSLF) aside from real-time 3D reconstruction with a sequential data stream as the shared input. In addition to online training, our model also provides real-time rendering after completing the data stream for visualization. We implement experiments using well-known RGBD indoor datasets, showing the high flexibility to embed our model into real-time 3D reconstruction and demonstrating high-fidelity view synthesis for these scenes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助ye采纳,获得10
1秒前
132发布了新的文献求助10
1秒前
牛肉mianbo发布了新的文献求助10
1秒前
xxf发布了新的文献求助10
1秒前
隐形曼青应助xiaomage采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
小丸子的樱桃红完成签到,获得积分10
4秒前
邱文县发布了新的文献求助10
4秒前
Mao关闭了Mao文献求助
4秒前
小郭完成签到,获得积分10
4秒前
jzt12138发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
FranklinQaQ完成签到,获得积分10
6秒前
6秒前
三莫莫莫发布了新的文献求助20
6秒前
大模型应助荒林采纳,获得30
6秒前
尔舟行发布了新的文献求助10
6秒前
7秒前
7秒前
大营村完成签到,获得积分10
7秒前
8秒前
实验顺利完成签到 ,获得积分20
9秒前
伪话痨家发布了新的文献求助30
9秒前
balenidezhupi发布了新的文献求助10
9秒前
10秒前
10秒前
tutu发布了新的文献求助10
10秒前
科研狗完成签到,获得积分10
10秒前
直率铃铛2发布了新的文献求助10
10秒前
核桃应助哦哦采纳,获得30
11秒前
12秒前
研究啥完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
重要建辉发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667