Online Learning of Neural Surface Light Fields Alongside Real-Time Incremental 3D Reconstruction

计算机科学 渲染(计算机图形) 人工智能 机器人学 计算机视觉 可视化 机器人 三维重建 忠诚 电信
作者
Yijun Yuan,Andreas Nüchter
出处
期刊:IEEE robotics and automation letters 卷期号:8 (6): 3844-3851
标识
DOI:10.1109/lra.2023.3273516
摘要

Immersive novel view generation is an important technology in the field of graphics and has recently also received attention for operator-based human-robot interaction. However, the involved training is time-consuming, and thus the current test scope is majorly on object capturing. This limits the usage of related models in the robotics community for 3D reconstruction since robots (1) usually only capture a very small range of view directions to surfaces that cause arbitrary predictions on unseen, novel direction, (2) requires real-time algorithms, and (3) work with growing scenes, e.g., in robotic exploration. The letter proposes a novel Neural Surface Light Fields model that copes with the small range of view directions while producing a good result in unseen directions. Exploiting recent encoding techniques, the training of our model is highly efficient. In addition, we design Multiple Asynchronous Neural Agents (MANA), a universal framework to learn each small region in parallel for large-scale growing scenes. Our model learns online the Neural Surface Light Fields (NSLF) aside from real-time 3D reconstruction with a sequential data stream as the shared input. In addition to online training, our model also provides real-time rendering after completing the data stream for visualization. We implement experiments using well-known RGBD indoor datasets, showing the high flexibility to embed our model into real-time 3D reconstruction and demonstrating high-fidelity view synthesis for these scenes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
细心千风完成签到,获得积分10
1秒前
黄诗婷完成签到,获得积分10
1秒前
1秒前
小懿发布了新的文献求助10
2秒前
xiaojitui发布了新的文献求助10
2秒前
华仔应助舒心的雪莲采纳,获得10
2秒前
3秒前
tenacity完成签到,获得积分10
3秒前
打打应助luckpupa采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
0529完成签到,获得积分10
3秒前
含蓄的茈发布了新的文献求助10
3秒前
小蘑菇应助dds采纳,获得10
3秒前
5秒前
fragilor完成签到,获得积分10
5秒前
5秒前
风往北吹发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
软语完成签到,获得积分10
7秒前
7秒前
大胆的静竹完成签到,获得积分10
7秒前
7秒前
8秒前
淀粉肠完成签到 ,获得积分10
8秒前
9秒前
柔弱翎完成签到,获得积分10
9秒前
烟花应助舒心的雪莲采纳,获得10
9秒前
11秒前
梁跃耀发布了新的文献求助10
11秒前
NexusExplorer应助那时年少采纳,获得10
12秒前
周ZHOU完成签到 ,获得积分20
12秒前
烟花应助小可采纳,获得10
12秒前
dlindl完成签到,获得积分10
13秒前
云飞扬完成签到,获得积分10
13秒前
不愿发布了新的文献求助10
13秒前
13秒前
Novice6354完成签到 ,获得积分10
14秒前
14秒前
橙子完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503