Online Learning of Neural Surface Light Fields Alongside Real-Time Incremental 3D Reconstruction

计算机科学 渲染(计算机图形) 人工智能 机器人学 计算机视觉 可视化 机器人 三维重建 忠诚 电信
作者
Yijun Yuan,Andreas Nüchter
出处
期刊:IEEE robotics and automation letters 卷期号:8 (6): 3844-3851
标识
DOI:10.1109/lra.2023.3273516
摘要

Immersive novel view generation is an important technology in the field of graphics and has recently also received attention for operator-based human-robot interaction. However, the involved training is time-consuming, and thus the current test scope is majorly on object capturing. This limits the usage of related models in the robotics community for 3D reconstruction since robots (1) usually only capture a very small range of view directions to surfaces that cause arbitrary predictions on unseen, novel direction, (2) requires real-time algorithms, and (3) work with growing scenes, e.g., in robotic exploration. The letter proposes a novel Neural Surface Light Fields model that copes with the small range of view directions while producing a good result in unseen directions. Exploiting recent encoding techniques, the training of our model is highly efficient. In addition, we design Multiple Asynchronous Neural Agents (MANA), a universal framework to learn each small region in parallel for large-scale growing scenes. Our model learns online the Neural Surface Light Fields (NSLF) aside from real-time 3D reconstruction with a sequential data stream as the shared input. In addition to online training, our model also provides real-time rendering after completing the data stream for visualization. We implement experiments using well-known RGBD indoor datasets, showing the high flexibility to embed our model into real-time 3D reconstruction and demonstrating high-fidelity view synthesis for these scenes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮语梦完成签到 ,获得积分10
刚刚
科研通AI6应助ERIS采纳,获得10
刚刚
Shaw发布了新的文献求助10
1秒前
1秒前
斯文败类应助DDD采纳,获得10
2秒前
青瓦完成签到 ,获得积分10
3秒前
果子发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
peanuttt完成签到,获得积分10
6秒前
6秒前
悬铃木发布了新的文献求助10
7秒前
汉堡包应助22222采纳,获得10
7秒前
7秒前
聪明的寒梅完成签到 ,获得积分10
7秒前
汉堡包应助哭泣的梦琪采纳,获得10
7秒前
CipherSage应助BW打工仔采纳,获得10
8秒前
8秒前
Shaw完成签到,获得积分10
8秒前
科研通AI6应助钙离子采纳,获得10
8秒前
8秒前
peanuttt发布了新的文献求助10
8秒前
hh完成签到,获得积分10
9秒前
豆子发布了新的文献求助10
9秒前
9秒前
10秒前
CodeCraft应助cc采纳,获得10
10秒前
10秒前
11秒前
hu970完成签到,获得积分10
11秒前
顾矜应助木木采纳,获得10
12秒前
css1997完成签到 ,获得积分10
12秒前
13秒前
13秒前
hu970发布了新的文献求助10
14秒前
14秒前
怡然的涫发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589068
求助须知:如何正确求助?哪些是违规求助? 4672334
关于积分的说明 14790349
捐赠科研通 4627486
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500706
关于科研通互助平台的介绍 1468396