Phase-retrieval algorithm based on Kramers–Kronig relations in coherent diffraction imaging

相位恢复 过采样 算法 相干衍射成像 光学 衍射 计算机科学 平滑度 物理 数学 电信 傅里叶变换 数学分析 带宽(计算)
作者
Ying Wang,Jianhui Zhou,Jiyang Ou,Jie Guo,Cailian Yang,Xiaoqiang Zhang,Peng Xu,M. Ying,Yanxia Xu,Qinghong Zhou,Tao Liu
出处
期刊:Journal of Optics [IOP Publishing]
卷期号:25 (2): 025601-025601 被引量:1
标识
DOI:10.1088/2040-8986/aca917
摘要

Abstract Coherent diffraction imaging (CDI) is a high-resolution technique that does not require x-ray lenses. With advances in scientific technology, such as synchrotron radiation, x-ray free-electron lasers, and coherent electron sources, CDI has been applied to diverse fields, such as biology, medicine, and semiconductors, as a high-resolution, nondestructive measure. With the rapid increase in demand for these applications, enhancing the efficiency of processing high-volume data has become a significant challenge for promotion. In this study, we proposed an algorithm that combines Kramers–Kronig (KK) relations with oversampling smoothness (OSS). The results were evaluated by introducing an error coefficient. We found that the error of the KK-OSS algorithm is always reduced by approximately 50% compared with the error reduction (ER) algorithm, hybrid input–output (HIO) algorithm, and OSS in real space. In the diffraction space, the error in the KK-OSS can be decreased to 0.11. With 100 iterations, KK-OSS spent 218.3 s on reconstructing most of the sample information, while ER was 258.1 s, HIO algorithm took 296.7 s and the reconstruction was still a random value. In Fraunhofer diffraction, it cost KK-OSS 58.8 s to reconstruct, while OSS took 61.9 s. Therefore, this method can reduce the reconstruction error, shorten the reconstruction time, and improve the efficiency compared with the ER, HIO, and OSS algorithms using a random phase as the initial value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
在水一方应助胡图图采纳,获得10
1秒前
leiyuekai发布了新的文献求助10
1秒前
屿鑫完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
Jian完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
JJ索发布了新的文献求助10
6秒前
科目三应助yutian采纳,获得10
7秒前
SI完成签到 ,获得积分10
7秒前
多情雨灵发布了新的文献求助10
7秒前
玉玉完成签到,获得积分10
8秒前
sa发布了新的文献求助10
8秒前
冷傲的罡发布了新的文献求助10
9秒前
Jian发布了新的文献求助10
9秒前
越越发布了新的文献求助10
10秒前
10秒前
12秒前
pancake发布了新的文献求助30
12秒前
12秒前
12秒前
cicytjsxjr发布了新的文献求助10
13秒前
科研通AI6.1应助娜娜采纳,获得10
13秒前
风汐5423完成签到,获得积分10
14秒前
17秒前
hotongue发布了新的文献求助10
18秒前
19秒前
Criminology34应助JJ索采纳,获得10
21秒前
安详发布了新的文献求助10
21秒前
21秒前
李健的小迷弟应助Ruby采纳,获得10
22秒前
Momomo应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896