清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integration of bioinformatics and machine learning strategies identifies APM-related gene signatures to predict clinical outcomes and therapeutic responses for breast cancer patients

Lasso(编程语言) 随机森林 肿瘤科 比例危险模型 逻辑回归 递归分区 乳腺癌 机器学习 医学 人工智能 计算机科学 癌症 计算生物学 内科学 生物 万维网
作者
Huan Shen,Jia-lin Xu,Zhen Zhu,Mingxing Liang,Di Xu,Wenquan Chen,Fang Zheng,Jinhai Tang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-2350621/v1
摘要

Abstract Background: Tumor antigenicity and efficiency of antigen presentation jointly influence tumor immunogenicity, which largely determines the effectiveness of immune checkpoint blockade (ICB). However, the role of altered antigen processing and presentation machinery (APM) in breast cancer (BRCA) has not been fully elucidated. Methods: A series of bioinformatic analyses and machine learning strategies were performed to construct APM-related gene signatures to guide personalized treatment for BRCA patients. A single-sample gene set enrichment analysis (ssGSEA) algorithm and weighted gene co-expression network analysis (WGCNA) were combined to screen for BRCA-specific APM-related genes. The non-negative matrix factorization (NMF) algorithm was used to divide the cohort into different clusters and the fgsea algorithm was applied to investigate the altered signaling pathways. Random survival forest (RSF) and the least absolute shrinkage and selection operator (Lasso) Cox regression analysis were combined to construct an APM-related risk score (APMrs) signature to predict overall survival. Furthermore, a nomogram and decision tree were generated to improve predictive accuracy and risk stratification for individual patients. Based on Tumor Immune Dysfunction and Exclusion (TIDE) method, random forest (RF) and Lasso logistic regression model were combined to establish an APM-related immunotherapeutic response score (APMis). Finally, immune infiltration, immunomodulators, mutational patterns, and potentially applicable drugs were comprehensively analyzed in different APM-related risk groups. Results: In this study, APMrs and APMis showed favorable performances in risk stratification and therapeutic prediction for BRCA patients. APMrs exhibited more powerful prognostic capacity and accurate survival prediction compared to conventional clinicopathological features. APMrs was closely associated with distinct mutational patterns, immune cell infiltration and immunomodulators expression. Furthermore, the two APM-related gene signatures were independently validated in external cohorts with prognosis or immunotherapeutic responses. Potential applicable drugs and targets were further mined in the APMrs-high group. Conclusion: The APM-related gene signatures established in our study could improve the personalized assessment of survival risk and guide ICB decision-making for BRCA patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英喆完成签到 ,获得积分10
5秒前
6秒前
个性仙人掌完成签到 ,获得积分10
8秒前
cyskdsn完成签到 ,获得积分10
10秒前
在路上完成签到 ,获得积分0
10秒前
maggiexjl发布了新的文献求助10
12秒前
赵勇完成签到 ,获得积分10
14秒前
研友_ZbP41L完成签到 ,获得积分10
31秒前
31秒前
xiaochuan925完成签到 ,获得积分10
31秒前
等等发布了新的文献求助10
35秒前
38秒前
Orange应助等等采纳,获得10
43秒前
卂枭发布了新的文献求助10
43秒前
52秒前
55秒前
英俊的铭应助卂枭采纳,获得10
59秒前
汉堡包应助maggiexjl采纳,获得10
1分钟前
雪妮完成签到 ,获得积分10
1分钟前
lihe198900完成签到 ,获得积分10
1分钟前
852应助尚好采纳,获得10
1分钟前
1分钟前
尚好完成签到,获得积分20
1分钟前
尚好发布了新的文献求助10
1分钟前
zeannezg完成签到 ,获得积分10
1分钟前
qiaobaqiao完成签到 ,获得积分10
1分钟前
HHM完成签到,获得积分10
1分钟前
重要的天空完成签到 ,获得积分10
2分钟前
木南大宝完成签到 ,获得积分10
3分钟前
spark810发布了新的文献求助10
3分钟前
wz完成签到,获得积分10
3分钟前
3分钟前
Andy发布了新的文献求助30
3分钟前
Andy完成签到,获得积分20
4分钟前
小徐完成签到 ,获得积分10
4分钟前
wangye完成签到 ,获得积分10
4分钟前
Herbs完成签到 ,获得积分10
5分钟前
阔达小懒虫完成签到,获得积分10
5分钟前
5分钟前
qcck完成签到,获得积分10
5分钟前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121711
求助须知:如何正确求助?哪些是违规求助? 2772108
关于积分的说明 7711035
捐赠科研通 2427474
什么是DOI,文献DOI怎么找? 1289396
科研通“疑难数据库(出版商)”最低求助积分说明 621386
版权声明 600158