Formal Safety Envelopes for Provably Accurate State Classification by Data-Driven Flight Models

计算机科学 航空航天 概率逻辑 状态空间 高斯过程 算法 人工智能 高斯分布 数学 航空航天工程 工程类 量子力学 统计 物理
作者
Elkin Cruz-Camacho,Ahmad Amer,Fotis Kopsaftopoulos,Carlos A. Varela
出处
期刊:Journal of aerospace information systems [American Institute of Aeronautics and Astronautics]
卷期号:20 (1): 3-16 被引量:2
标识
DOI:10.2514/1.i011073
摘要

Aerospace systems are inherently stochastic and increasingly data-driven, thus hard to formally verify. Data-driven statistical models can be used to estimate the state and classify potentially anomalous conditions of aerospace systems from multiple heterogeneous sensors with high accuracy. In this paper, we consider the problem of precisely bounding the regions in the sensor input space of a stochastic system in which safe state classification can be formally proven. As an archetypal application, we consider a statistical model created to detect aerodynamic stall in a prototype wing retrofitted with piezoelectric sensors and used to generate data in a wind tunnel for different flight states. We formally define safety envelopes as regions parameterized by [Formula: see text] and [Formula: see text], to respectively capture how model-predictable observed sensor values are, and given these values, how likely the model’s accurate state classification is. Safety envelopes are formalized in the Agda proof assistant, used to also generate formally verified runtime monitors for sensor data stream analyses in the Haskell programming language. We further propose a new metric for model classification quality, evaluate it on our wing prototype model, and compare it to the model restricted to two different fixed airspeeds, and enhanced to a continuous Gaussian process regression model. Safety envelopes are an important step in formally verifying precise probabilistic properties of data-driven models used in stochastic aerospace systems and could be used by advanced control algorithms to maintain these systems well within safe operation boundaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
善学以致用应助陈橙橙采纳,获得10
2秒前
云端步伐完成签到,获得积分20
9秒前
11秒前
wwwwww完成签到,获得积分10
12秒前
小蘑菇应助DQY采纳,获得10
13秒前
白桃完成签到 ,获得积分10
15秒前
刘大海发布了新的文献求助10
16秒前
星川完成签到,获得积分10
18秒前
xpy发布了新的文献求助10
19秒前
19秒前
qiqiqiqiqi完成签到 ,获得积分10
19秒前
20秒前
情怀应助科研通管家采纳,获得10
22秒前
pluto应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
23秒前
lingua给lingua的求助进行了留言
23秒前
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
自然完成签到,获得积分10
23秒前
lookspace完成签到,获得积分10
23秒前
23秒前
自觉的时光完成签到,获得积分10
24秒前
hh发布了新的文献求助10
24秒前
畅快的海冬完成签到,获得积分10
25秒前
library2025应助老张采纳,获得10
26秒前
赚大钱完成签到,获得积分20
26秒前
hesongwen完成签到,获得积分10
29秒前
lhf完成签到,获得积分10
29秒前
qin希望应助畅快的海冬采纳,获得10
29秒前
原鑫完成签到 ,获得积分10
30秒前
忘记密码发布了新的文献求助10
30秒前
30秒前
yangjinru完成签到 ,获得积分10
32秒前
xiyinzhiwu完成签到,获得积分10
32秒前
bingyu306完成签到,获得积分10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578