亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting ozone formation in petrochemical industrialized Lanzhou city by interpretable ensemble machine learning

臭氧 气象学 环境科学 污染 空气质量指数 空气污染 灵敏度(控制系统) 地面臭氧 大气科学 氮氧化物 大气化学 气候学 化学 地理 工程类 燃烧 地质学 生物 有机化学 电子工程 生态学
作者
Li Wang,Yuan Zhao,Jinsen Shi,Jianmin Ma,Xiaoyue Liu,Dongliang Han,Hong Gao,Tao Huang
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:318: 120798-120798 被引量:26
标识
DOI:10.1016/j.envpol.2022.120798
摘要

Ground-level ozone (O3) formation depends on meteorology, precursor emissions, and atmospheric chemistry. Understanding the key drivers behind the O3 formation and developing an accurate and efficient method for timely assessing the O3-VOCs-NOx relationships applicable in different O3 pollution events are essential. Here, we developed a novel machine learning ensemble model coupled with a Shapley additive explanation algorithm to predict the O3 formation regime and derive O3 formation sensitivity curves. The algorithm was tested for O3 events during the COVID-19 lockdown, a sandstorm event, and a heavy O3 pollution episode (maximum hourly O3 concentration >200 μg/m3) from 2019 to 2021. We show that increasing O3 concentrations during the COVID-19 lockdown and the heavy O3 pollution event were mainly caused by the photochemistry subject to local air quality and meteorological conditions. Influenced by the sandstorm weather, low O3 levels were mainly attributable to weak sunlight and low precursor levels. O3 formation sensitivity curves demonstrate that O3 formation in the study area was in a VOCs-sensitive regime. The VOCs-specific O3 sensitivity curves can also help make hybrid and timely strategies for O3 abatement. The results demonstrate that machine learning driven by observational data has the potential to be a very useful tool in predicting and interpreting O3 formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
xingsixs完成签到,获得积分10
17秒前
星辰大海应助科研通管家采纳,获得10
55秒前
1分钟前
邓权发布了新的文献求助10
1分钟前
娇气的幼南完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
生动之云发布了新的文献求助10
1分钟前
2分钟前
2分钟前
美好颜发布了新的文献求助10
2分钟前
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
Betty发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
慕青应助lty采纳,获得10
4分钟前
4分钟前
4分钟前
lty发布了新的文献求助10
4分钟前
小岩完成签到 ,获得积分10
4分钟前
4分钟前
咕咕发布了新的文献求助10
4分钟前
彩色黑米完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
AKi233完成签到,获得积分10
5分钟前
AKi233发布了新的文献求助10
5分钟前
充电宝应助AKi233采纳,获得10
5分钟前
咕咕完成签到,获得积分10
5分钟前
FengyaoWang完成签到,获得积分10
5分钟前
6分钟前
传奇3应助科研通管家采纳,获得10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167234
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638