臭氧
气象学
环境科学
污染
空气质量指数
空气污染
灵敏度(控制系统)
地面臭氧
大气科学
氮氧化物
大气化学
气候学
化学
地理
工程类
生态学
有机化学
电子工程
地质学
生物
燃烧
作者
Li Wang,Yuan Zhao,Jinsen Shi,Jianmin Ma,Xiaoyue Liu,Dongliang Han,Hong Gao,Tao Huang
标识
DOI:10.1016/j.envpol.2022.120798
摘要
Ground-level ozone (O3) formation depends on meteorology, precursor emissions, and atmospheric chemistry. Understanding the key drivers behind the O3 formation and developing an accurate and efficient method for timely assessing the O3-VOCs-NOx relationships applicable in different O3 pollution events are essential. Here, we developed a novel machine learning ensemble model coupled with a Shapley additive explanation algorithm to predict the O3 formation regime and derive O3 formation sensitivity curves. The algorithm was tested for O3 events during the COVID-19 lockdown, a sandstorm event, and a heavy O3 pollution episode (maximum hourly O3 concentration >200 μg/m3) from 2019 to 2021. We show that increasing O3 concentrations during the COVID-19 lockdown and the heavy O3 pollution event were mainly caused by the photochemistry subject to local air quality and meteorological conditions. Influenced by the sandstorm weather, low O3 levels were mainly attributable to weak sunlight and low precursor levels. O3 formation sensitivity curves demonstrate that O3 formation in the study area was in a VOCs-sensitive regime. The VOCs-specific O3 sensitivity curves can also help make hybrid and timely strategies for O3 abatement. The results demonstrate that machine learning driven by observational data has the potential to be a very useful tool in predicting and interpreting O3 formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI