Plasma-Induced Superhydrophobicity as a Green Technology for Enhanced Air-Gap Membrane Distillation

材料科学 气隙(管道) 纳米技术 膜蒸馏 等离子体 蒸馏 工程物理 化学 工程类 复合材料 色谱法 物理 海水淡化 生物化学 量子力学
作者
Dimosthenis Ioannou,Youmin Hou,Prexa Shah,Kosmas Ellinas,Michael Kappl,Andreas Sapalidis,Vassilios Constantoudis,Hans‐Jürgen Butt,Εvangelos Gogolides
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:3
标识
DOI:10.2139/ssrn.4295130
摘要

Superhydrophobicity has only recently become a requirement in membrane fabrication and modification. Superhydrophobic membranes have shown improved flux performance, fouling and scaling resistance in long-term membrane distillation (MD) operations compared to simply hydrophobic membranes. Here, we introduce plasma micro-nanotexturing followed by plasma deposition as a novel, dry and green method for superhydrophobic membrane fabrication. Using plasma micro-nanotexturing, commercial membranes (WSCA from 40-135 °) are transformed to superhydrophobic (WSCA>150 °, hysteresis <10 °). To this direction, hydrophobic Polytetrafluoroethylene (PTFE) as well as hydrophilic Cellulose acetate (CA) membranes are transformed to superhydrophobic. The superhydrophobic PTFE membranes showed enhanced water flux in standard air gap membrane distillation and more stable performance compared to the commercial ones for at least 48 h continuous operation, with salt rejection >99.99%. Additionally, their performance and high salt rejection remained stable, when a low surface tension solution containing SDS/NaCl (55 mN/m) was used, show-casing their anti-wetting properties. The improved performance is attributed to superhydrophobicity and increased pore size after plasma micro-nanotexturing. More importantly, CA membranes, which are initially unsuitable for MD (WSCA≈40 °), showed excellent performance with stable flux and salt rejection >99.2% again for at least 48 hours, demonstrating the effectiveness of the proposed method for wetting control in membranes regardless of their initial wetting properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SIYYU发布了新的文献求助10
刚刚
黄连发布了新的文献求助10
刚刚
杨帅发布了新的文献求助10
1秒前
1秒前
1秒前
mh完成签到,获得积分10
1秒前
尧南完成签到,获得积分10
1秒前
sjx发布了新的文献求助10
2秒前
十六发布了新的文献求助10
3秒前
3秒前
华仔应助王博龙采纳,获得10
4秒前
4秒前
今后应助王博龙采纳,获得10
4秒前
ding应助王博龙采纳,获得10
4秒前
彭于晏应助王博龙采纳,获得10
4秒前
小二郎应助王博龙采纳,获得10
4秒前
科研通AI5应助王博龙采纳,获得10
4秒前
尔槐应助王博龙采纳,获得10
4秒前
浮游应助王博龙采纳,获得10
4秒前
有结果应助王博龙采纳,获得10
4秒前
完美世界应助11111111采纳,获得10
5秒前
kangruicong完成签到,获得积分10
5秒前
zzzzz发布了新的文献求助10
5秒前
xrl发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
完美世界应助小于采纳,获得10
8秒前
顾矜应助文静金针菇采纳,获得10
8秒前
浮游应助jess采纳,获得10
8秒前
热血发布了新的文献求助10
8秒前
明亮曼卉完成签到 ,获得积分20
8秒前
9秒前
9秒前
10秒前
lokia发布了新的文献求助10
10秒前
11秒前
12秒前
ABCDE完成签到,获得积分10
13秒前
li发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Research Handbook on Corporate Governance in China 800
translating meaning 500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4904515
求助须知:如何正确求助?哪些是违规求助? 4182696
关于积分的说明 12986696
捐赠科研通 3948522
什么是DOI,文献DOI怎么找? 2165566
邀请新用户注册赠送积分活动 1184085
关于科研通互助平台的介绍 1090457