亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multimodal Machine Learning Approach to Diagnosis, Prognosis, and Treatment Prediction for Neurodegenerative Diseases and Cancer

计算机科学 人工智能 卷积神经网络 医学诊断 深度学习 循环神经网络 特征提取 机器学习 特征(语言学) 支持向量机 模式识别(心理学) 人工神经网络 医学 语言学 哲学 病理
作者
S. K. Agarwal
标识
DOI:10.1109/uemcon54665.2022.9965655
摘要

Despite early diagnosis and estimating the future course of neurodegenerative and cancerous diseases being integral for survival of patients, clinical and algorithmic methods fail to effectively utilize the multimodal data available, are time-inefficient, and expensive, making it difficult to access accurate screenings for these diseases. Therefore, a novel end-to-end quantum machine learning approach using multiple data modalities for the identification of diagnoses, prognoses, and effective treatments is proposed. In a procedural flow, data is sourced from one or more of the following: CT scan images, webcam, patient-physician audio, Whole Slide Images, and clinical data. For image data, a Convolutional Neural Network, is employed to detect high level features. With text-based clinical data (including audio-derived data), a Bidirectional Encoder Representation model is used to extract text embeddings. For video data, pupil progression and average fixation duration features are manually crafted. All feature vectors are concatenated, normalized, passed through a Deep Neural Network, and then mapped to one of 38 neurodegenerative and cancerous diseases. For prognosis, features are pooled, concatenated with the diagnosis feature vector, and passed through another neural network with an output of survival times. Treatment prediction involves an information-retrieval task matching feature vectors to treatments/drug lists from the FDA. The proposed approach was tested on 5,000 patient profiles sourced from the public TCGA and JPND databases, outperforming all other state-of-the-art approaches. The model predicted diagnoses with an accuracy of 98.53%, achieved a Concordance Index of 0.94 in predicting prognoses, and in treatment prediction achieved a 99.32% accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Azlne完成签到,获得积分10
7秒前
22秒前
zhjl发布了新的文献求助10
27秒前
33秒前
滕皓轩完成签到 ,获得积分20
34秒前
1分钟前
清脆语海发布了新的文献求助10
1分钟前
李爱国应助清脆语海采纳,获得10
1分钟前
1分钟前
2分钟前
MiaMia应助科研通管家采纳,获得30
2分钟前
科研通AI6应助科研通管家采纳,获得30
2分钟前
2分钟前
香蕉觅云应助zl采纳,获得10
2分钟前
zym完成签到 ,获得积分10
2分钟前
3分钟前
ZYP发布了新的文献求助10
3分钟前
深情安青应助朱羊羊采纳,获得10
3分钟前
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
zl发布了新的文献求助10
4分钟前
hhx完成签到,获得积分20
5分钟前
zl完成签到,获得积分10
5分钟前
Wei发布了新的文献求助10
5分钟前
科研通AI6应助曦耀采纳,获得10
5分钟前
小马哥完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4750040
关于积分的说明 15007251
捐赠科研通 4797884
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522880
关于科研通互助平台的介绍 1482534