A Multimodal Machine Learning Approach to Diagnosis, Prognosis, and Treatment Prediction for Neurodegenerative Diseases and Cancer

计算机科学 人工智能 卷积神经网络 医学诊断 深度学习 循环神经网络 特征提取 机器学习 特征(语言学) 支持向量机 模式识别(心理学) 人工神经网络 医学 语言学 哲学 病理
作者
S. K. Agarwal
标识
DOI:10.1109/uemcon54665.2022.9965655
摘要

Despite early diagnosis and estimating the future course of neurodegenerative and cancerous diseases being integral for survival of patients, clinical and algorithmic methods fail to effectively utilize the multimodal data available, are time-inefficient, and expensive, making it difficult to access accurate screenings for these diseases. Therefore, a novel end-to-end quantum machine learning approach using multiple data modalities for the identification of diagnoses, prognoses, and effective treatments is proposed. In a procedural flow, data is sourced from one or more of the following: CT scan images, webcam, patient-physician audio, Whole Slide Images, and clinical data. For image data, a Convolutional Neural Network, is employed to detect high level features. With text-based clinical data (including audio-derived data), a Bidirectional Encoder Representation model is used to extract text embeddings. For video data, pupil progression and average fixation duration features are manually crafted. All feature vectors are concatenated, normalized, passed through a Deep Neural Network, and then mapped to one of 38 neurodegenerative and cancerous diseases. For prognosis, features are pooled, concatenated with the diagnosis feature vector, and passed through another neural network with an output of survival times. Treatment prediction involves an information-retrieval task matching feature vectors to treatments/drug lists from the FDA. The proposed approach was tested on 5,000 patient profiles sourced from the public TCGA and JPND databases, outperforming all other state-of-the-art approaches. The model predicted diagnoses with an accuracy of 98.53%, achieved a Concordance Index of 0.94 in predicting prognoses, and in treatment prediction achieved a 99.32% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
呆瓜完成签到,获得积分10
3秒前
火星上的雨筠完成签到,获得积分10
4秒前
木光完成签到,获得积分20
4秒前
勤恳梦山发布了新的文献求助20
4秒前
范范778完成签到 ,获得积分10
4秒前
MFCC发布了新的文献求助10
4秒前
clover完成签到,获得积分20
6秒前
6秒前
7秒前
852应助Knight采纳,获得30
7秒前
因你常乐完成签到,获得积分10
7秒前
归尘应助潇飞天下采纳,获得10
7秒前
拼搏的学姐完成签到,获得积分20
8秒前
森荼应助胡琰彦采纳,获得10
8秒前
Owen应助木光采纳,获得10
9秒前
卓头OvQ发布了新的文献求助10
10秒前
WANG.完成签到,获得积分10
10秒前
10秒前
aobacae完成签到,获得积分10
11秒前
xixihaha发布了新的文献求助10
12秒前
bq发布了新的文献求助10
12秒前
1233333完成签到,获得积分10
12秒前
莫若舞发布了新的文献求助10
13秒前
13秒前
MFCC完成签到,获得积分20
15秒前
Song完成签到,获得积分10
15秒前
文艺点点完成签到,获得积分10
15秒前
16秒前
19秒前
无足鸟完成签到,获得积分10
20秒前
科研通AI2S应助研友_nPoXoL采纳,获得10
20秒前
冷酷海露完成签到,获得积分10
21秒前
21秒前
SciGPT应助科研通管家采纳,获得20
22秒前
直率向薇发布了新的文献求助10
22秒前
甜甜玫瑰应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
FashionBoy应助现实的画板采纳,获得10
22秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3415283
求助须知:如何正确求助?哪些是违规求助? 3017167
关于积分的说明 8879668
捐赠科研通 2704722
什么是DOI,文献DOI怎么找? 1482989
科研通“疑难数据库(出版商)”最低求助积分说明 685630
邀请新用户注册赠送积分活动 680579