A Multimodal Machine Learning Approach to Diagnosis, Prognosis, and Treatment Prediction for Neurodegenerative Diseases and Cancer

计算机科学 人工智能 卷积神经网络 医学诊断 深度学习 循环神经网络 特征提取 机器学习 特征(语言学) 支持向量机 模式识别(心理学) 人工神经网络 医学 语言学 哲学 病理
作者
S. K. Agarwal
标识
DOI:10.1109/uemcon54665.2022.9965655
摘要

Despite early diagnosis and estimating the future course of neurodegenerative and cancerous diseases being integral for survival of patients, clinical and algorithmic methods fail to effectively utilize the multimodal data available, are time-inefficient, and expensive, making it difficult to access accurate screenings for these diseases. Therefore, a novel end-to-end quantum machine learning approach using multiple data modalities for the identification of diagnoses, prognoses, and effective treatments is proposed. In a procedural flow, data is sourced from one or more of the following: CT scan images, webcam, patient-physician audio, Whole Slide Images, and clinical data. For image data, a Convolutional Neural Network, is employed to detect high level features. With text-based clinical data (including audio-derived data), a Bidirectional Encoder Representation model is used to extract text embeddings. For video data, pupil progression and average fixation duration features are manually crafted. All feature vectors are concatenated, normalized, passed through a Deep Neural Network, and then mapped to one of 38 neurodegenerative and cancerous diseases. For prognosis, features are pooled, concatenated with the diagnosis feature vector, and passed through another neural network with an output of survival times. Treatment prediction involves an information-retrieval task matching feature vectors to treatments/drug lists from the FDA. The proposed approach was tested on 5,000 patient profiles sourced from the public TCGA and JPND databases, outperforming all other state-of-the-art approaches. The model predicted diagnoses with an accuracy of 98.53%, achieved a Concordance Index of 0.94 in predicting prognoses, and in treatment prediction achieved a 99.32% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻筮发布了新的文献求助10
刚刚
orixero应助陈cxz采纳,获得10
1秒前
Jasper应助俏皮的白柏采纳,获得10
1秒前
1秒前
2秒前
WC241002292完成签到,获得积分10
2秒前
miaojuly完成签到,获得积分10
2秒前
3秒前
wang发布了新的文献求助10
3秒前
Liu应助不宁不令采纳,获得20
3秒前
难过的谷芹发布了新的文献求助150
3秒前
5秒前
WEIWEI完成签到,获得积分10
5秒前
6秒前
7秒前
小小发布了新的文献求助10
7秒前
顾矜应助李长印采纳,获得10
7秒前
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
直率的惜寒完成签到,获得积分10
10秒前
11秒前
爱莉希雅发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
情怀应助笨笨山芙采纳,获得10
14秒前
小白发布了新的文献求助10
15秒前
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
核桃应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
ludov应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
555557发布了新的文献求助10
16秒前
怡然乌应助科研通管家采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035