A flexible swallowing gripper for harvesting apples and its grasping force sensing model

弯曲 接触力 有限元法 正确性 计算机科学 模拟 机器人 过程(计算) 约束(计算机辅助设计) 变形(气象学) 结构工程 工程类 人工智能 机械工程 声学 材料科学 算法 物理 量子力学 操作系统 复合材料
作者
Zhen Zhang,Jun Zhou,Boyang Yi,Baohua Zhang,Kai Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107489-107489 被引量:18
标识
DOI:10.1016/j.compag.2022.107489
摘要

Securely harvesting apples without damage remains a challenge owing to their softness, vulnerability, and irregular shapes. In this study, a flexible swallowing (FS) gripper was designed and tested for harvesting apples. To analyze the adaptive grasping process of this gripper, first, a closed equation of the force-to-deformation model for the finger was proposed based on the Chained-Beam-Constraint Model (CBCM). The correctness of the model was verified by finite element analysis (FEA), and the maximum error was no more than 1.7 %. Subsequently, the grasping force sensing model related to bending angle of the finger was established based on the force-to-deformation model. Finally, taking an apple with a diameter of 80 mm as the experimental object, several groups of grasping tests were conducted with the gripper. The bending angle and force sensing error for different grasping positions of the fingers were analyzed and compared. The results demonstrated that the gripper can sufficiently perceive the grasping force, and the force sensing accuracy in the middle of the finger was the best, with an average absolute error and relative error of 0.153 N and 5.65 %, respectively; A better envelope ability and greater grasping force was obtained when grasping with the bottom of the finger; the maximum bending angle and maximum contact force were 22.6° and 5.72 N respectively. Moreover, a harvesting experiment using this gripper installed at the end of a robot arm was conducted, which further verified that this gripper has a good grasping ability for apples and can be sufficiently applied in actual robot harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康佳璐发布了新的文献求助10
1秒前
1秒前
Camellia完成签到 ,获得积分10
2秒前
2秒前
搜集达人应助佰斯特威采纳,获得30
2秒前
QXS完成签到 ,获得积分10
2秒前
Jasper应助Ll采纳,获得10
2秒前
zengli完成签到 ,获得积分10
3秒前
2go完成签到,获得积分10
3秒前
派大星完成签到,获得积分10
3秒前
娜行发布了新的文献求助10
3秒前
4秒前
小巧的如冬完成签到,获得积分10
4秒前
lxh完成签到,获得积分10
4秒前
4秒前
HEIKU应助谦让傲菡采纳,获得10
4秒前
舒涵关注了科研通微信公众号
4秒前
灰鹅发布了新的文献求助10
5秒前
可颂完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
国服懒羊羊完成签到,获得积分10
7秒前
领导范儿应助ZTT采纳,获得10
7秒前
moon发布了新的文献求助10
8秒前
小宇发布了新的文献求助10
8秒前
8秒前
Neon0524完成签到 ,获得积分10
8秒前
HEIKU应助颜绫采纳,获得50
9秒前
9秒前
Jiayou Zhang完成签到,获得积分10
9秒前
高高迎蓉发布了新的文献求助10
9秒前
徐霜完成签到 ,获得积分10
10秒前
DDXXC完成签到,获得积分10
10秒前
忧郁的续完成签到,获得积分20
10秒前
陈强发布了新的文献求助30
10秒前
wzg666完成签到,获得积分10
11秒前
11秒前
爆米花应助找不到采纳,获得10
11秒前
任性的梦菲应助圈圈采纳,获得30
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672