Artificial intelligence applicated in gastric cancer: A bibliometric and visual analysis via CiteSpace

科学网 图书馆学 引用 中国 癌症 文献计量学 计算机科学 梅德林 医学 地理 政治学 内科学 考古 法学
作者
Guoyang Zhang,Jingjing Song,Zongfeng Feng,Wentao Zhao,Pan Huang,Li Liu,Yang Zhang,Xufeng Su,Yukang Wu,Yi Cao,Zhengrong Li,Zhigang Jie
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:12
标识
DOI:10.3389/fonc.2022.1075974
摘要

This study aimed to analyze and visualize the current research focus, research frontiers, evolutionary processes, and trends of artificial intelligence (AI) in the field of gastric cancer using a bibliometric analysis.The Web of Science Core Collection database was selected as the data source for this study to retrieve and obtain articles and reviews related to AI in gastric cancer. All the information extracted from the articles was imported to CiteSpace to conduct the bibliometric and knowledge map analysis, allowing us to clearly visualize the research hotspots and trends in this field.A total of 183 articles published between 2017 and 2022 were included, contributed by 201 authors from 33 countries/regions. Among them, China (47.54%), Japan (21.86%), and the USA (13.11%) have made outstanding contributions in this field, accounting fsor 82.51% of the total publications. The primary research institutions were Wuhan University, Tokyo University, and Tada Tomohiro Inst Gastroenterol and Proctol. Tada (n = 12) and Hirasawa (n = 90) were ranked first in the top 10 authors and co-cited authors, respectively. Gastrointestinal Endoscopy (21 publications; IF 2022, 9.189; Q1) was the most published journal, while Gastric Cancer (133 citations; IF 2022, 8.171; Q1) was the most co-cited journal. Nevertheless, the cooperation between different countries and institutions should be further strengthened. The most common keywords were AI, gastric cancer, and convolutional neural network. The "deep-learning algorithm" started to burst in 2020 and continues till now, which indicated that this research topic has attracted continuous attention in recent years and would be the trend of research on AI application in GC.Research related to AI in gastric cancer is increasing exponentially. Current research hotspots focus on the application of AI in gastric cancer, represented by convolutional neural networks and deep learning, in diagnosis and differential diagnosis and staging. Considering the great potential and clinical application prospects, the related area of AI applications in gastric cancer will remain a research hotspot in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助宇文青寒采纳,获得10
3秒前
今后应助宇文青寒采纳,获得10
3秒前
嗯哼应助宇文青寒采纳,获得10
3秒前
mmmio应助宇文青寒采纳,获得10
3秒前
3秒前
4秒前
李某某发布了新的文献求助10
5秒前
Candice应助能干豆芽采纳,获得10
6秒前
8秒前
乐乐应助镇痛蚊子采纳,获得10
10秒前
WROBTY发布了新的文献求助30
11秒前
14秒前
矛头蝮发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
17秒前
调研昵称发布了新的文献求助10
17秒前
柔弱静柏发布了新的文献求助10
18秒前
hangfengzi发布了新的文献求助10
19秒前
19秒前
20秒前
WROBTY完成签到,获得积分10
21秒前
22秒前
xiaoxiao发布了新的文献求助10
23秒前
yifanchen应助魔幻的依云采纳,获得10
24秒前
无情念之发布了新的文献求助10
24秒前
消消乐完成签到,获得积分10
25秒前
乐乐发布了新的文献求助10
25秒前
等待的花卷完成签到,获得积分20
27秒前
流白发布了新的文献求助10
28秒前
29秒前
小吉完成签到,获得积分10
31秒前
孟缇完成签到 ,获得积分10
32秒前
33秒前
善学以致用应助无情念之采纳,获得10
33秒前
35秒前
LuoYR@SZU完成签到,获得积分10
38秒前
dwz发布了新的文献求助10
38秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341028
求助须知:如何正确求助?哪些是违规求助? 2968821
关于积分的说明 8635161
捐赠科研通 2648355
什么是DOI,文献DOI怎么找? 1450125
科研通“疑难数据库(出版商)”最低求助积分说明 671725
邀请新用户注册赠送积分活动 660838