Cross-level covariance approach to the disaggregation of between-person effect and within-person effect.

协方差 心理信息 计量经济学 统计 相关性 潜变量 协方差分析 心理学 数学 计算机科学 几何学 政治学 法学 梅德林
作者
Kazuki Hori,Yasuo Miyazaki
出处
期刊:Psychological Methods [American Psychological Association]
被引量:2
标识
DOI:10.1037/met0000548
摘要

In longitudinal studies, researchers are often interested in investigating relations between variables over time. A well-known issue in such a situation is that naively regressing an outcome on a predictor results in a coefficient that is a weighted average of the between-person and within-person effect, which is difficult to interpret. This article focuses on the cross-level covariance approach to disaggregating the two effects. Unlike the traditional centering/detrending approach, the cross-level covariance approach estimates the within-person effect by correlating the within-level observed variables with the between-level latent factors; thereby, partialing out the between-person association from the within-level predictor. With this key device kept, we develop novel latent growth curve models, which can estimate the between-person effects of the predictor's change rate. The proposed models are compared with an existing cross-level covariance model and a centering/detrending model through a real data analysis and a small simulation. The real data analysis shows that the interpretation of the effect parameters and other between-level parameters depends on how a model deals with the time-varying predictors. The simulation reveals that our proposed models can unbiasedly estimate the between- and within-person effects but tend to be more unstable than the existing models. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chun发布了新的文献求助10
刚刚
2秒前
4秒前
5秒前
喜悦的秋柔完成签到,获得积分10
6秒前
xixi发布了新的文献求助10
7秒前
Orange应助niuniu采纳,获得10
8秒前
华仔应助启点采纳,获得10
9秒前
wqw发布了新的文献求助10
10秒前
Lyn驳回了田様应助
11秒前
可爱的函函应助zhan采纳,获得10
12秒前
alexa完成签到,获得积分10
13秒前
踏实的火龙果完成签到 ,获得积分10
15秒前
16秒前
河豚不擦鞋完成签到 ,获得积分10
16秒前
小马甲应助小宝爸爸采纳,获得10
18秒前
19秒前
20秒前
张雷应助优雅的涵瑶采纳,获得20
21秒前
xixi完成签到,获得积分10
21秒前
JazzWon完成签到,获得积分10
21秒前
22秒前
jor666发布了新的文献求助10
23秒前
启点发布了新的文献求助10
23秒前
23秒前
drzz完成签到,获得积分10
26秒前
29秒前
一颗好困芽完成签到 ,获得积分10
29秒前
Sky发布了新的文献求助10
29秒前
29秒前
打打应助feiying88采纳,获得10
32秒前
34秒前
pingpinglver发布了新的文献求助10
34秒前
在水一方应助科研通管家采纳,获得10
34秒前
kecheng应助科研通管家采纳,获得30
34秒前
JamesPei应助科研通管家采纳,获得10
34秒前
SHAO应助科研通管家采纳,获得10
34秒前
小二郎应助科研通管家采纳,获得10
34秒前
阔达紫青应助科研通管家采纳,获得10
35秒前
在水一方应助科研通管家采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991883
求助须知:如何正确求助?哪些是违规求助? 3533014
关于积分的说明 11260344
捐赠科研通 3272297
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425