已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-level covariance approach to the disaggregation of between-person effect and within-person effect.

协方差 心理信息 计量经济学 统计 相关性 潜变量 协方差分析 心理学 数学 计算机科学 几何学 政治学 法学 梅德林
作者
Kazuki Hori,Yasuo Miyazaki
出处
期刊:Psychological Methods [American Psychological Association]
被引量:2
标识
DOI:10.1037/met0000548
摘要

In longitudinal studies, researchers are often interested in investigating relations between variables over time. A well-known issue in such a situation is that naively regressing an outcome on a predictor results in a coefficient that is a weighted average of the between-person and within-person effect, which is difficult to interpret. This article focuses on the cross-level covariance approach to disaggregating the two effects. Unlike the traditional centering/detrending approach, the cross-level covariance approach estimates the within-person effect by correlating the within-level observed variables with the between-level latent factors; thereby, partialing out the between-person association from the within-level predictor. With this key device kept, we develop novel latent growth curve models, which can estimate the between-person effects of the predictor's change rate. The proposed models are compared with an existing cross-level covariance model and a centering/detrending model through a real data analysis and a small simulation. The real data analysis shows that the interpretation of the effect parameters and other between-level parameters depends on how a model deals with the time-varying predictors. The simulation reveals that our proposed models can unbiasedly estimate the between- and within-person effects but tend to be more unstable than the existing models. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动人的向松完成签到 ,获得积分10
1秒前
不可以虫鸣吗我是大聪明完成签到 ,获得积分10
2秒前
郜不正完成签到,获得积分10
3秒前
舒心小海豚完成签到 ,获得积分10
4秒前
4秒前
4秒前
kenti2023完成签到 ,获得积分10
5秒前
Ni发布了新的文献求助10
8秒前
hh完成签到 ,获得积分10
9秒前
CR7发布了新的文献求助10
10秒前
12秒前
13秒前
陶醉的蜜蜂完成签到 ,获得积分10
14秒前
大树完成签到 ,获得积分10
15秒前
棠真完成签到 ,获得积分0
15秒前
Ni完成签到 ,获得积分20
16秒前
U87完成签到,获得积分10
17秒前
111完成签到 ,获得积分10
17秒前
CR7完成签到,获得积分10
17秒前
ROC发布了新的文献求助10
18秒前
郑zheng完成签到 ,获得积分10
20秒前
GingerF应助科研通管家采纳,获得50
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得20
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
Orange应助科研通管家采纳,获得10
22秒前
Owen应助牛哥采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
shanmao完成签到,获得积分10
22秒前
FashionBoy应助wise111采纳,获得10
24秒前
Sharif318完成签到,获得积分10
26秒前
爆米花应助Dragonfln采纳,获得10
27秒前
27秒前
29秒前
Jenny712发布了新的文献求助10
29秒前
31秒前
3D完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356201
求助须知:如何正确求助?哪些是违规求助? 4488058
关于积分的说明 13971574
捐赠科研通 4388833
什么是DOI,文献DOI怎么找? 2411257
邀请新用户注册赠送积分活动 1403802
关于科研通互助平台的介绍 1377590