An exact algorithm for the two-echelon vehicle routing problem with drones

无人机 车辆路径问题 计算机科学 数学优化 列生成 整数规划 禁忌搜索 线性规划 布线(电子设计自动化) 算法 数学 计算机网络 遗传学 生物
作者
Hang Zhou,Hu Qin,Chun Cheng,Louis-Martin Rousseau
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:168: 124-150 被引量:42
标识
DOI:10.1016/j.trb.2023.01.002
摘要

This paper studies a new variant of the vehicle routing problem with drones, i.e., the two-echelon vehicle routing problem with drones, where multiple vehicles and drones work collaboratively to serve customers. Drones can perform multiple back-and-forth trips when their paired vehicle stops at a customer node, forming a two-echelon network. Several practical constraints such as customers’ delivery deadlines and drones’ energy capacity are considered. Different from existing studies, we treat the number of drones taken by each vehicle as a decision variable instead of a given parameter, which provides more flexibility for planning vehicle and drone routes. We first formulate this problem as a mixed-integer linear programming model, which is solvable by off-the-shelf commercial solvers. To tackle instances more efficiently, we next construct a set-partitioning model. To solve it, an exact branch-and-price algorithm is proposed, where a bidirectional labeling algorithm is used to solve the pricing problem. To speed up the algorithm, a tabu search algorithm is first applied before the exact labeling algorithm for finding desired columns in each iteration of the column generation process. Extensive numerical tests show that our algorithm can solve most instances within 25 customers to optimality in a short time frame and some instances of 35 customers to optimality within a three-hour time limit. Results also demonstrate that the allocation decisions of drones can help save the duration of all routes by 3.44% on average for 25-customer instances, compared to the case of fixing the number of paired drones on each vehicle. In addition, sensitivity analyses show that multiple strategies, e.g., adopting batteries of a higher energy density and developing faster drones, can be applied to further improve the delivery efficiency of a truck–drone system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助刘维尼采纳,获得10
刚刚
云淡风清发布了新的文献求助10
刚刚
无花果应助Dr.c采纳,获得10
1秒前
科研通AI2S应助SC采纳,获得10
1秒前
lkb完成签到,获得积分10
1秒前
erhgbw应助ahjbdadjk采纳,获得10
1秒前
2秒前
yff发布了新的文献求助10
3秒前
Zpiao发布了新的文献求助10
3秒前
4秒前
CipherSage应助清萍红檀采纳,获得10
4秒前
lww完成签到,获得积分10
5秒前
角落滴完成签到 ,获得积分10
5秒前
我cr完成签到,获得积分20
5秒前
stupidZ完成签到,获得积分10
5秒前
郝好完成签到,获得积分10
6秒前
香蕉觅云应助3s采纳,获得10
6秒前
wualexandra完成签到,获得积分10
6秒前
7秒前
万能图书馆应助慧慧采纳,获得10
7秒前
8秒前
共享精神应助科研老头采纳,获得10
8秒前
ShowMaker应助splatoon采纳,获得20
8秒前
邵辛发布了新的文献求助10
8秒前
最好发布了新的文献求助10
9秒前
LM完成签到,获得积分10
10秒前
酷波er应助zz采纳,获得10
11秒前
11秒前
Yey完成签到 ,获得积分10
12秒前
张建文完成签到,获得积分10
12秒前
fei发布了新的文献求助10
12秒前
研友_VZG7GZ应助科研菜坤采纳,获得10
12秒前
思源应助qi采纳,获得10
14秒前
Jun发布了新的文献求助10
14秒前
Hw发布了新的文献求助30
14秒前
FashionBoy应助小白采纳,获得10
14秒前
15秒前
小木木发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144274
求助须知:如何正确求助?哪些是违规求助? 2795879
关于积分的说明 7816861
捐赠科研通 2451946
什么是DOI,文献DOI怎么找? 1304774
科研通“疑难数据库(出版商)”最低求助积分说明 627291
版权声明 601419