多非利特
美西律
QT间期
医学
长QT综合征
内科学
复极
新加坡元1
诱导多能干细胞
心脏病学
药理学
电生理学
化学
胚胎干细胞
糖皮质激素
生物化学
基因
作者
Maengjo Kim,Philip T. Sager,David J. Tester,Sabindra Pradhananga,Samantha K. Hamrick,Dinesh Srinivasan,Saumya Das,Michael J. Ackerman
出处
期刊:Heart Rhythm
[Elsevier]
日期:2023-01-05
卷期号:20 (4): 589-595
被引量:5
标识
DOI:10.1016/j.hrthm.2022.12.036
摘要
Drug-induced QT prolongation (DI-QTP) is a clinical entity in which administration of a human ether-à-go-go-related gene/rapid delayed rectifier potassium current blocker such as dofetilide prolongs the cardiac action potential duration (APD) and the QT interval on the electrocardiogram. Inhibition of serum and glucocorticoid regulated kinase-1 (SGK1) reduces the APD at 90% repolarization (APD90) in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) derived from patients with congenital long QT syndrome.Here, we test the efficacy of 2 novel SGK1 inhibitors-SGK1-I1 and SGK1-I2-in iPSC-CM models of dofetilide-induced APD prolongation.Normal iPSC-CMs were treated with dofetilide to produce a DI-QTP iPSC-CM model. SGK1-I1's and SGK1-I2's therapeutic efficacy for shortening the dofetilide-induced APD90 prolongation was compared to mexiletine. The APD90 values were recorded 4 hours after treatment using a voltage-sensing dye.The APD90 was prolonged in normal iPSC-CMs treated with dofetilide (673 ± 8 ms vs 436 ± 4 ms; P < .0001). While 10 mM mexiletine shortened the APD90 of dofetilide-treated iPSC-CMs from 673 ± 4 to 563 ± 8 ms (46% attenuation; P < .0001), 30 nM of SGK1-I1 shortened the APD90 from 673 ± 8 to 502 ± 7 ms (72% attenuation; P < .0001). Additionally, 300 nM SGK1-I2 shortened the APD90 of dofetilide-treated iPSC-CMs from 673 ± 8 to 460 ± 7 ms (90% attenuation; P < .0001).These novel SGK1-Is substantially attenuated the pathological APD prolongation in a human heart cell model of DI-QTP. These preclinical data support the development of this therapeutic strategy to counter and neutralize DI-QTP, thereby increasing the safety profile for patients receiving drugs with torsadogenic potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI