Combining Digital Twin and Machine Learning for the Fused Filament Fabrication Process

塑料挤出 材料科学 机械工程 挤压 微通道 熔丝制造 制作 计算机科学 复合材料 3D打印 工程类 纳米技术 医学 替代医学 病理
作者
J.B. Butt,Vahaj Mohaghegh
出处
期刊:Metals [MDPI AG]
卷期号:13 (1): 24-24 被引量:10
标识
DOI:10.3390/met13010024
摘要

In this work, the feasibility of applying a digital twin combined with machine learning algorithms (convolutional neural network and random forest classifier) to predict the performance of PLA (polylactic acid or polylactide) parts is being investigated. These parts are printed using a low-cost desktop 3D printer based on the principle of fused filament fabrication. A digital twin of the extruder assembly has been created in this work. This is the component responsible for melting the thermoplastic material and depositing it on the print bed. The extruder assembly digital twin has been separated into three simulations, i.e., conjugate convective heat transfer, multiphase material melting, and non-Newtonian microchannel. The functionality of the physical extruder is controlled by a PID/PWM circuit, which has also been modelled within the digital twin to control the virtual extruder’s operation. The digital twin simulations were validated through experimentation and showed a good agreement. After validation, a variety of parts were printed using PLA at four different extrusion temperatures (180 °C, 190 °C, 200 °C, 210 °C) and ten different extrusion rates (ranging from 70% to 160%). Measurements of the surface roughness, hardness, and tensile strength of the printed parts were recorded. To predict the performance of the printed parts using the digital twin, a correlation was established between the temperature profile of the non-Newtonian microchannel simulation and the experimental results using the machine learning algorithms. To achieve this objective, a reduced order model (ROM) of the extruder assembly digital twin was developed to generate a training database. The database generated by the ROM (simulation results) was used as the input for the machine learning algorithms and experimental data were used as target values (classified into three categories) to establish the correlation between the digital twin output and performance of the physically printed parts. The results show that the random forest classifier has a higher accuracy compared to the convolutional neural network in categorising the printed parts based on the numerical simulations and experimental data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热念双发布了新的文献求助20
1秒前
MQRR发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
情怀应助小童小新采纳,获得10
3秒前
3秒前
YULIA应助又又采纳,获得10
5秒前
5秒前
5秒前
兴奋大船完成签到,获得积分10
6秒前
绝世容颜完成签到,获得积分10
6秒前
goldfish完成签到 ,获得积分10
6秒前
顺心冬易发布了新的文献求助10
6秒前
明理萃发布了新的文献求助20
7秒前
汉堡包应助小新同学采纳,获得10
7秒前
IBMffff应助Doctor_Peng采纳,获得10
7秒前
dzvd发布了新的文献求助10
7秒前
包容的海豚完成签到 ,获得积分10
9秒前
aaa发布了新的文献求助10
10秒前
深情安青应助和谐的天宇采纳,获得10
10秒前
左友铭发布了新的文献求助10
10秒前
朴素小海豚完成签到,获得积分10
11秒前
Chem is try发布了新的文献求助10
11秒前
烟花应助韫染采纳,获得10
11秒前
双黄应助安陌煜采纳,获得10
11秒前
大玉儿完成签到,获得积分10
13秒前
mochi发布了新的文献求助10
13秒前
14秒前
123669完成签到,获得积分10
14秒前
托马斯亮绿完成签到 ,获得积分10
14秒前
韶华发布了新的文献求助10
14秒前
顺心冬易完成签到,获得积分10
15秒前
李健的小迷弟应助111采纳,获得10
17秒前
友好的小翠完成签到,获得积分10
18秒前
19秒前
19秒前
BB发布了新的文献求助10
20秒前
CCC完成签到,获得积分10
21秒前
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247936
求助须知:如何正确求助?哪些是违规求助? 2891185
关于积分的说明 8266538
捐赠科研通 2559374
什么是DOI,文献DOI怎么找? 1388196
科研通“疑难数据库(出版商)”最低求助积分说明 650711
邀请新用户注册赠送积分活动 627620