Automatic feature learning model combining functional connectivity network and graph regularization for depression detection

判别式 计算机科学 正规化(语言学) 人工智能 Lasso(编程语言) 特征选择 脑电图 图形 机器学习 模式识别(心理学) 理论计算机科学 心理学 神经科学 万维网
作者
Lijun Yang,Xiaoyong Wei,Fengrui Liu,Xinhua Zhu,Feng Zhou
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:82: 104520-104520 被引量:6
标识
DOI:10.1016/j.bspc.2022.104520
摘要

Depression has become a major health and economic burden worldwide. Electroencephalography (EEG) data has been used by a growing number of researchers to study depression. EEG-based functional connectivity (FC) features have emerged since they can account for the relationships between different brain regions. In this paper, the time–frequency analysis technique is introduced into the construction of the FC matrix. Specifically, instead of directly building the FC matrix from the EEG signals, the intrinsic time-scale decomposition (ITD) method is employed to mine the time–frequency information, and then the Pearson correlation is used to measure the FC between channels. The results show the significant differences in the FC networks between different groups. Furthermore, the graph-based adaptive least absolute shrinkage and selection operator model (GA-LASSO) is proposed in this paper to learn the discriminative features from the FC matrix, which is mainly achieved by adding both the adaptive L1 and graph regularized terms to the original least absolute shrinkage and selection operator (LASSO) model. The advantages of GA-LASSO come from the processing of discriminative weights of different features, and the connections between features by graph topology. In addition, the effectiveness of the proposed strategy of depression detection is validated on the open dataset MODMA, as well as the self-collected dataset called EDRA. The experimental results show that the current study sheds new light on the pathological mechanism of subclinical depression and suggests that EEG resting-state FC analysis may identify potentially effective biomarkers for its clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青炀完成签到 ,获得积分10
刚刚
WYN完成签到,获得积分20
刚刚
特昂唐完成签到 ,获得积分10
刚刚
liu完成签到,获得积分10
刚刚
果汁发布了新的文献求助20
刚刚
Jiahuan完成签到,获得积分10
刚刚
合适凝雁发布了新的文献求助10
刚刚
天天开心发布了新的文献求助10
1秒前
Tse发布了新的文献求助10
1秒前
迷路的枫完成签到,获得积分10
1秒前
为你等候发布了新的文献求助10
2秒前
慕青应助科研通管家采纳,获得10
3秒前
劲秉应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得30
3秒前
科目三应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
yoyofun应助科研通管家采纳,获得10
4秒前
Cyin完成签到,获得积分10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
清新的涵双完成签到 ,获得积分10
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
yoyofun应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
Jiahuan发布了新的文献求助10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
田様应助活泼莫英采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
yoyofun应助科研通管家采纳,获得10
6秒前
默默地读文献应助虹虹采纳,获得20
6秒前
Orange应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729877
求助须知:如何正确求助?哪些是违规求助? 3274712
关于积分的说明 9988365
捐赠科研通 2990104
什么是DOI,文献DOI怎么找? 1640896
邀请新用户注册赠送积分活动 779488
科研通“疑难数据库(出版商)”最低求助积分说明 748235