清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic feature learning model combining functional connectivity network and graph regularization for depression detection

判别式 计算机科学 正规化(语言学) 人工智能 Lasso(编程语言) 特征选择 脑电图 图形 机器学习 模式识别(心理学) 理论计算机科学 心理学 神经科学 万维网
作者
Lijun Yang,Xiaoyong Wei,Fengrui Liu,Xinhua Zhu,Feng Zhou
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:82: 104520-104520 被引量:6
标识
DOI:10.1016/j.bspc.2022.104520
摘要

Depression has become a major health and economic burden worldwide. Electroencephalography (EEG) data has been used by a growing number of researchers to study depression. EEG-based functional connectivity (FC) features have emerged since they can account for the relationships between different brain regions. In this paper, the time–frequency analysis technique is introduced into the construction of the FC matrix. Specifically, instead of directly building the FC matrix from the EEG signals, the intrinsic time-scale decomposition (ITD) method is employed to mine the time–frequency information, and then the Pearson correlation is used to measure the FC between channels. The results show the significant differences in the FC networks between different groups. Furthermore, the graph-based adaptive least absolute shrinkage and selection operator model (GA-LASSO) is proposed in this paper to learn the discriminative features from the FC matrix, which is mainly achieved by adding both the adaptive L1 and graph regularized terms to the original least absolute shrinkage and selection operator (LASSO) model. The advantages of GA-LASSO come from the processing of discriminative weights of different features, and the connections between features by graph topology. In addition, the effectiveness of the proposed strategy of depression detection is validated on the open dataset MODMA, as well as the self-collected dataset called EDRA. The experimental results show that the current study sheds new light on the pathological mechanism of subclinical depression and suggests that EEG resting-state FC analysis may identify potentially effective biomarkers for its clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗雅香完成签到 ,获得积分10
11秒前
zsfxqq完成签到 ,获得积分10
26秒前
领导范儿应助方俊驰采纳,获得10
30秒前
charih完成签到 ,获得积分10
35秒前
37秒前
Akim应助cc采纳,获得10
37秒前
方俊驰发布了新的文献求助10
41秒前
nini完成签到,获得积分10
50秒前
50秒前
冬1完成签到 ,获得积分10
51秒前
51秒前
55秒前
wayne完成签到 ,获得积分10
57秒前
cc发布了新的文献求助10
58秒前
苗条的一一完成签到,获得积分10
58秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
fjhsg25完成签到,获得积分20
1分钟前
个性仙人掌完成签到 ,获得积分10
1分钟前
孤独剑完成签到 ,获得积分10
1分钟前
celia完成签到 ,获得积分10
2分钟前
2分钟前
黑山路老军医完成签到,获得积分20
2分钟前
2分钟前
燕晓啸发布了新的文献求助50
2分钟前
su完成签到 ,获得积分10
2分钟前
2分钟前
优雅草丛发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
何pulapula发布了新的文献求助10
2分钟前
quantumdot完成签到,获得积分10
2分钟前
无限的千凝完成签到 ,获得积分10
2分钟前
LOST完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
喵了个咪完成签到 ,获得积分10
2分钟前
MiSD完成签到,获得积分10
3分钟前
打打应助fjhsg25采纳,获得10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015509
求助须知:如何正确求助?哪些是违规求助? 3555418
关于积分的说明 11318049
捐赠科研通 3288665
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012