Assessing Performance and Clinical Usefulness in Prediction Models With Survival Outcomes: Practical Guidance for Cox Proportional Hazards Models

比例危险模型 医学 重症监护医学 医学物理学 内科学
作者
David J. McLernon,Daniele Giardiello,Ben Van Calster,Laure Wynants,Nan van Geloven,Maarten van Smeden,Terry M. Therneau,Ewout W. Steyerberg,David J. McLernon,Daniele Giardiello,Ben Van Calster,Laure Wynants,Nan van Geloven,Maarten van Smeden,Terry M. Therneau,Ewout W. Steyerberg,Patrick M. Bossuyt,Tom Boyles,Gary S. Collins,Kathleen Karr
出处
期刊:Annals of Internal Medicine [American College of Physicians]
卷期号:176 (1): 105-114 被引量:75
标识
DOI:10.7326/m22-0844
摘要

Risk prediction models need thorough validation to assess their performance. Validation of models for survival outcomes poses challenges due to the censoring of observations and the varying time horizon at which predictions can be made. This article describes measures to evaluate predictions and the potential improvement in decision making from survival models based on Cox proportional hazards regression. As a motivating case study, the authors consider the prediction of the composite outcome of recurrence or death (the "event") in patients with breast cancer after surgery. They developed a simple Cox regression model with 3 predictors, as in the Nottingham Prognostic Index, in 2982 women (1275 events over 5 years of follow-up) and externally validated this model in 686 women (285 events over 5 years). Improvement in performance was assessed after the addition of progesterone receptor as a prognostic biomarker. The model predictions can be evaluated across the full range of observed follow-up times or for the event occurring by the end of a fixed time horizon of interest. The authors first discuss recommended statistical measures that evaluate model performance in terms of discrimination, calibration, or overall performance. Further, they evaluate the potential clinical utility of the model to support clinical decision making according to a net benefit measure. They provide SAS and R code to illustrate internal and external validation. The authors recommend the proposed set of performance measures for transparent reporting of the validity of predictions from survival models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lgy发布了新的文献求助10
刚刚
sxun发布了新的文献求助10
刚刚
花火易逝发布了新的文献求助10
1秒前
云槿完成签到,获得积分10
1秒前
llt完成签到 ,获得积分10
1秒前
自由大叔发布了新的文献求助10
1秒前
2秒前
琪琪完成签到,获得积分10
2秒前
Rec完成签到 ,获得积分10
2秒前
烟花应助赫灵竹采纳,获得10
2秒前
2秒前
HHM完成签到,获得积分10
3秒前
3秒前
李健应助不正直跳跳糖采纳,获得10
3秒前
时庆钰完成签到,获得积分10
3秒前
Wangpengfei完成签到,获得积分10
4秒前
hms完成签到 ,获得积分10
5秒前
Ray完成签到,获得积分10
5秒前
hsn完成签到,获得积分10
5秒前
英俊的铭应助lalala采纳,获得10
5秒前
吴鹏飞发布了新的文献求助10
5秒前
5秒前
wjx发布了新的文献求助10
6秒前
SXJ发布了新的文献求助10
6秒前
MCC发布了新的文献求助10
6秒前
luckily完成签到,获得积分10
7秒前
科研通AI2S应助大方的怜寒采纳,获得10
8秒前
8秒前
9秒前
Sean发布了新的文献求助10
9秒前
10秒前
达落完成签到,获得积分10
10秒前
Anna完成签到,获得积分10
10秒前
11秒前
专注人生完成签到,获得积分10
12秒前
脑洞疼应助第七个星球采纳,获得10
12秒前
12秒前
科研通AI6应助朴素的代芹采纳,获得10
13秒前
祭礼之龙发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410477
求助须知:如何正确求助?哪些是违规求助? 4527894
关于积分的说明 14113380
捐赠科研通 4442528
什么是DOI,文献DOI怎么找? 2437973
邀请新用户注册赠送积分活动 1429999
关于科研通互助平台的介绍 1407906