Simultaneous Depth Estimation and Localization for Cell Manipulation Based on Deep Learning

偏移量(计算机科学) 计算机科学 人工智能 平面的 计算机视觉 模式识别(心理学) 计算机图形学(图像) 程序设计语言
作者
Zengshuo Wang,Huiying Gong,Ke Li,Bin Yang,Yue Du,Yaowei Liu,Xin Zhao,Mingzhu Sun
标识
DOI:10.1109/iros47612.2022.9982228
摘要

Visual localization, which is a key technology to realize the automation of cell manipulation, has been widely studied. Since the depth of field of the microscope is narrow, the planar localization and depth estimation are usually coupled together. At present, most methods adopt the serial working mode of focusing first and then planar localization, but they usually do not have good real-time performance and stability. In this paper, a simultaneous depth estimation and localization network was developed for cell manipulation. The network takes a focused image and a defocus-offset image as inputs, and outputs the defocus in the depth direction and the offset in the plane at the same time after going through defocus-offset information extraction, defocus classification mapping and offset regression mapping. To train and test our network, we also create two datasets: An Adherent Cell dataset and an Injection Micropipette dataset. The experimental results demonstrated that the proposed method achieves the detection of all test samples with a frame rate of more than 40Hz, and the maximum errors of depth estimation and localization are $\boldsymbol{2.44\mu m}$ and $\boldsymbol{0.49\mu m}$ , respectively. The proposed method has good stability, which is mainly reflected in its strong generalization ability and anti-noise ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助adazbd采纳,获得10
1秒前
bkagyin应助皮皮桂采纳,获得10
1秒前
2秒前
重要的哈密瓜完成签到 ,获得积分10
2秒前
会飞的云完成签到 ,获得积分10
3秒前
3秒前
毕不了业的凡阿哥完成签到,获得积分10
3秒前
野子发布了新的文献求助10
3秒前
berry完成签到,获得积分10
4秒前
5秒前
LUNWENREQUEST发布了新的文献求助10
5秒前
大模型应助匹诺曹采纳,获得10
6秒前
ding应助过时的又槐采纳,获得10
7秒前
10秒前
鄙视注册完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
落寞溪灵完成签到 ,获得积分10
14秒前
玖玖柒idol完成签到,获得积分10
14秒前
曌虞完成签到,获得积分10
14秒前
15秒前
啥,这都是啥完成签到,获得积分10
15秒前
皮皮桂发布了新的文献求助10
16秒前
17秒前
大大发布了新的文献求助10
17秒前
18秒前
orixero应助wang1090采纳,获得30
20秒前
20秒前
l11x29发布了新的文献求助10
22秒前
lin完成签到,获得积分10
22秒前
大侠发布了新的文献求助10
23秒前
23秒前
是锦锦呀完成签到,获得积分10
23秒前
23秒前
李秋静发布了新的文献求助10
24秒前
zhen发布了新的文献求助50
26秒前
是锦锦呀发布了新的文献求助60
26秒前
Khr1stINK发布了新的文献求助10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808