Simultaneous Depth Estimation and Localization for Cell Manipulation Based on Deep Learning

偏移量(计算机科学) 计算机科学 人工智能 平面的 计算机视觉 模式识别(心理学) 计算机图形学(图像) 程序设计语言
作者
Zengshuo Wang,Huiying Gong,Ke Li,Bin Yang,Yue Du,Yaowei Liu,Xin Zhao,Mingzhu Sun
标识
DOI:10.1109/iros47612.2022.9982228
摘要

Visual localization, which is a key technology to realize the automation of cell manipulation, has been widely studied. Since the depth of field of the microscope is narrow, the planar localization and depth estimation are usually coupled together. At present, most methods adopt the serial working mode of focusing first and then planar localization, but they usually do not have good real-time performance and stability. In this paper, a simultaneous depth estimation and localization network was developed for cell manipulation. The network takes a focused image and a defocus-offset image as inputs, and outputs the defocus in the depth direction and the offset in the plane at the same time after going through defocus-offset information extraction, defocus classification mapping and offset regression mapping. To train and test our network, we also create two datasets: An Adherent Cell dataset and an Injection Micropipette dataset. The experimental results demonstrated that the proposed method achieves the detection of all test samples with a frame rate of more than 40Hz, and the maximum errors of depth estimation and localization are $\boldsymbol{2.44\mu m}$ and $\boldsymbol{0.49\mu m}$ , respectively. The proposed method has good stability, which is mainly reflected in its strong generalization ability and anti-noise ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kangnakangna完成签到,获得积分10
1秒前
1秒前
2秒前
张光辉完成签到,获得积分10
2秒前
积极的远山完成签到,获得积分10
2秒前
列子发布了新的文献求助10
2秒前
顾矜应助收手吧大哥采纳,获得10
3秒前
Hellolyj完成签到 ,获得积分10
3秒前
君君完成签到,获得积分10
4秒前
haha发布了新的文献求助10
4秒前
柯一一应助SID采纳,获得10
4秒前
4秒前
4秒前
4秒前
李爱国应助dream采纳,获得10
4秒前
leaguy完成签到,获得积分10
5秒前
一颗杨梅完成签到,获得积分10
5秒前
5秒前
子民应助Sunny采纳,获得10
6秒前
6秒前
炙热的桐发布了新的文献求助10
6秒前
毛毛完成签到,获得积分10
7秒前
11完成签到,获得积分10
7秒前
Wang发布了新的文献求助10
7秒前
田野发布了新的文献求助10
8秒前
yydhda完成签到,获得积分10
9秒前
alan发布了新的文献求助10
9秒前
自信以冬完成签到,获得积分10
10秒前
10秒前
10秒前
123发布了新的文献求助10
11秒前
11秒前
11秒前
脑洞疼应助斯文的冰姬采纳,获得10
11秒前
SHAN发布了新的文献求助10
11秒前
lblb完成签到,获得积分10
11秒前
炙热的桐完成签到,获得积分10
11秒前
6plus1发布了新的文献求助20
12秒前
ccc完成签到,获得积分10
12秒前
mingxuan完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960498
求助须知:如何正确求助?哪些是违规求助? 3506752
关于积分的说明 11131877
捐赠科研通 3238932
什么是DOI,文献DOI怎么找? 1789917
邀请新用户注册赠送积分活动 872043
科研通“疑难数据库(出版商)”最低求助积分说明 803128