Multigraph Convolutional Networks for Rainfall Estimation in Complex Terrain

计算机科学 卷积神经网络 地形 过度拟合 图形 插值(计算机图形学) 云计算 人工智能 数据挖掘 遥感 机器学习 人工神经网络 理论计算机科学 地质学 地理 地图学 操作系统 运动(物理)
作者
Zhicheng Huang,Yagmur Derin,Pierre-Emmanuel Kirstetter,Yifu Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2022.3212644
摘要

Accurate rainfall estimation over complex terrain is critical for science and applications concerning life and economy, but it is challenging due to the multifactorial relationship between topography, environmental parameters, and rainfall intensity. In this work, a graph convolutional neural network-based approach named multi-graph convolutional neural network (M-GCN) is used to interpolate precipitation at a 30-min temporal scale. Furthermore, to enable the model to adapt to the variabilities of spatial correlation, we cluster the ground radar nodes based on their geographical information and expand the network with the multi-graph mechanism. Thus, we can avoid overfitting caused by varying conditions over a wide area, and the estimation accuracy can be improved. The method was tested on ground radar-gauge precipitation data over three months on the West Coast of the United States, in 2015. The experimental result confirms that our proposed method outperforms the state-of-the-art interpolation methods. Besides interpolation capacity, the M-GCN also has the advantage in computational efficiency. The distributed graphs in the M-GCN architecture make it possible to train the networks on edge servers and the cloud.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Hollen完成签到 ,获得积分10
2秒前
慕青应助学术蠕虫采纳,获得10
3秒前
3秒前
叶子发布了新的文献求助10
4秒前
orangel完成签到,获得积分10
5秒前
半壶月色半边天完成签到 ,获得积分10
6秒前
tmpstlml发布了新的文献求助10
6秒前
7秒前
7秒前
不安饼干完成签到 ,获得积分10
9秒前
活泼的飞鸟完成签到,获得积分10
9秒前
10秒前
xuyun发布了新的文献求助10
10秒前
10秒前
zzcres完成签到,获得积分10
12秒前
eeeee完成签到 ,获得积分10
12秒前
乐观德地完成签到,获得积分10
13秒前
大个应助yf_zhu采纳,获得10
13秒前
llk发布了新的文献求助10
14秒前
一只大肥猫完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
16秒前
16秒前
科研通AI5应助GGG采纳,获得10
17秒前
17秒前
19秒前
Ann发布了新的文献求助20
19秒前
19秒前
buno应助duxinyue采纳,获得10
19秒前
xlj发布了新的文献求助10
20秒前
20秒前
可爱的函函应助zhen采纳,获得10
21秒前
研友_VZG7GZ应助dingdong采纳,获得10
22秒前
22秒前
李成恩完成签到 ,获得积分10
23秒前
心碎的黄焖鸡完成签到 ,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808