An on-demand tunable energy absorption system to resolve multi-directional impacts

模块化设计 材料科学 锤子 稳健性(进化) 刚度 吸收(声学) 比模量 互换性 高效能源利用 计算机科学 机械工程 工程类 复合材料 复合数 电气工程 基因 操作系统 化学 冶金 生物化学
作者
Kuijian Yang,Xiang Hu,Fei Pan,Chuan Qiao,Bin Ding,Hongbin Liang,Xinyu Hu,He Zhang,Yuli Chen
出处
期刊:International Journal of Solids and Structures [Elsevier]
卷期号:271-272: 112257-112257 被引量:8
标识
DOI:10.1016/j.ijsolstr.2023.112257
摘要

Energy absorption structures with on-demand tunable mechanical response are urgently needed when dealing with sudden impacts. However, most impact-resistant structures cannot flexibly adjust the mechanical properties to accommodate capricious load characteristics once manufactured. A modular energy absorption system is proposed in this work to combine efficient and tunable properties, which can be easily assembled by bamboo-inspired thin-walled tubes without applying extra constraints. Both high-speed drop hammer impact experiment and finite element simulations have been carried out to investigate the dynamic response of the proposed system and verify its multi-directional self-locking capability. Moreover, based on the interchangeability of the tubes, tunable mechanical response can be achieved through stiffness gradient design and geometrical tailoring. Furthermore, the arranging of tubes for target property shows such strong robustness that the irregularity of arrangement can hardly affect the mechanical behavior of system, allowing for a further improvement on the response speed and property tunability. Compared to existing self-locked systems with same equivalent density, the specific energy absorption and energy absorption efficiency can be respectively enhanced by at least 105% and 225%, which are attributed to the efficient and stable deformation mode of the tubes. This study represents an effective strategy for designing and optimizing high-performance energy absorption devices for multiple applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助可爱的弘文采纳,获得10
1秒前
orixero应助小飞鼠采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助20
2秒前
2秒前
神勇从波完成签到 ,获得积分10
2秒前
今后应助乔乔采纳,获得10
2秒前
852应助唐飒采纳,获得10
3秒前
18746005898发布了新的文献求助10
3秒前
3秒前
yeahokk完成签到,获得积分10
3秒前
3秒前
3秒前
恨海情天完成签到,获得积分10
4秒前
隐形曼青应助自然黄豆采纳,获得10
4秒前
Tian发布了新的文献求助10
5秒前
5秒前
hu123发布了新的文献求助10
5秒前
萧瑟处完成签到,获得积分10
5秒前
大个应助577采纳,获得10
6秒前
彭于晏应助Ms采纳,获得10
6秒前
慕青应助烯灯采纳,获得10
8秒前
8秒前
8秒前
英姑应助悦耳的盼芙采纳,获得10
8秒前
林林总总发布了新的文献求助10
8秒前
8秒前
深情安青应助lisali采纳,获得10
9秒前
9秒前
阿猫发布了新的文献求助10
9秒前
9秒前
Hello应助稳重的雅绿采纳,获得10
10秒前
10秒前
ty完成签到,获得积分10
10秒前
baobaot发布了新的文献求助10
10秒前
Yi完成签到,获得积分10
10秒前
10秒前
10秒前
搜集达人应助luym采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836