Hyperspectral Image Acquisition Methods and Processing Techniques Based on Traditional and Deep Learning Methodologies-A Study

高光谱成像 计算机科学 人工智能 图像处理 背景(考古学) 深度学习 领域(数学) 数据处理 精准农业 光学(聚焦) 遥感 计算机视觉 图像(数学) 地理 数学 物理 考古 纯数学 光学 农业 操作系统
作者
V.Vishnu Sai Swarupa,M. Devanathan
标识
DOI:10.1109/icstcee56972.2022.10100029
摘要

Hyperspectral image processing is a very rapidly growing technology these days. It extends the scope of its applications across diversified fields such as Remote sensing, precision agriculture, medicine, Computer Vision applications and many more. Especially Hyperspectral Imagery, benefiting from its very own nature of providing rich spectral information, find many apllications in the field of Remote sensing and Earth observation. With the development of hyperspectral imaging sensor technology, the supply of HSI data has increased greatly, creating a need for proportionate rise in the HIS Processing techniques for better interpretation of data. In this context Deep Learning has become a viable option to handle huge datasets like Hyperspectral Imagery. Thus many enthusiastic researchers are showing interest in the domain of Hyperspectral Image Processing. This paper attempts to provide the basic concepts of HSI acquisition and processing at an abstract level with more focus given to Deep Learning based HSI processing tasks. So that the work will come in handy to the beginners in this field to get the preliminary concepts of HSI at a glance. To the best of our knowledge this work is first of its kind to bring to together in this study the the concepts of HSI acquisition and HSI processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大模型应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
mmichaell完成签到,获得积分10
1秒前
zho发布了新的文献求助10
1秒前
夜行狗完成签到,获得积分10
2秒前
3秒前
三明治完成签到 ,获得积分10
3秒前
一一应助123采纳,获得10
4秒前
xu完成签到,获得积分20
4秒前
7秒前
李爱国应助小怨种采纳,获得30
8秒前
zimu012完成签到,获得积分10
9秒前
Xm完成签到 ,获得积分10
10秒前
11秒前
lkk发布了新的文献求助30
12秒前
hhhh发布了新的文献求助10
14秒前
16秒前
可靠寒云完成签到,获得积分10
17秒前
acs924完成签到,获得积分10
18秒前
帅气之槐发布了新的文献求助10
19秒前
21秒前
22秒前
123完成签到,获得积分20
23秒前
Jessica完成签到,获得积分10
23秒前
极度厌蠢应助xuan21采纳,获得10
24秒前
科研通AI2S应助sen采纳,获得10
24秒前
可爱的函函应助ShengzhangLiu采纳,获得10
24秒前
Cupid发布了新的文献求助100
26秒前
小怨种发布了新的文献求助30
27秒前
28秒前
坦率的海豚完成签到,获得积分10
28秒前
31秒前
NexusExplorer应助单身的映容采纳,获得10
36秒前
lunyu完成签到,获得积分10
40秒前
44秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350975
求助须知:如何正确求助?哪些是违规求助? 2976530
关于积分的说明 8675444
捐赠科研通 2657683
什么是DOI,文献DOI怎么找? 1455204
科研通“疑难数据库(出版商)”最低求助积分说明 673739
邀请新用户注册赠送积分活动 664242