Modeling and design of heterogeneous hierarchical bioinspired spider web structures using generative deep learning and additive manufacturing

计算机科学 生成模型 可扩展性 代表(政治) 人工智能 生成语法 理论计算机科学 数据库 政治 政治学 法学
作者
Wei Lü,Nic A. Lee,Markus J. Buehler
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.05137
摘要

Spider webs are incredible biological structures, comprising thin but strong silk filament and arranged into complex hierarchical architectures with striking mechanical properties (e.g., lightweight but high strength, achieving diverse mechanical responses). While simple 2D orb webs can easily be mimicked, the modeling and synthesis of 3D-based web structures remain challenging, partly due to the rich set of design features. Here we provide a detailed analysis of the heterogenous graph structures of spider webs, and use deep learning as a way to model and then synthesize artificial, bio-inspired 3D web structures. The generative AI models are conditioned based on key geometric parameters (including average edge length, number of nodes, average node degree, and others). To identify graph construction principles, we use inductive representation sampling of large experimentally determined spider web graphs, to yield a dataset that is used to train three conditional generative models: 1) An analog diffusion model inspired by nonequilibrium thermodynamics, with sparse neighbor representation, 2) a discrete diffusion model with full neighbor representation, and 3) an autoregressive transformer architecture with full neighbor representation. All three models are scalable, produce complex, de novo bio-inspired spider web mimics, and successfully construct graphs that meet the design objectives. We further propose algorithm that assembles web samples produced by the generative models into larger-scale structures based on a series of geometric design targets, including helical and parametric shapes, mimicking, and extending natural design principles towards integration with diverging engineering objectives. Several webs are manufactured using 3D printing and tested to assess mechanical properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好滴捏发布了新的文献求助10
2秒前
Arzu发布了新的文献求助10
3秒前
Gengar发布了新的文献求助10
5秒前
Ava应助645654564采纳,获得10
6秒前
呆萌棒棒糖完成签到,获得积分10
8秒前
科研通AI2S应助Sophia采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得20
9秒前
Ricey应助科研通管家采纳,获得10
9秒前
奥特超曼应助科研通管家采纳,获得10
10秒前
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
LUJyyyy完成签到,获得积分10
14秒前
大模型应助斯文觅珍采纳,获得10
14秒前
14秒前
Owen应助吕不韦采纳,获得10
15秒前
英姑应助好滴捏采纳,获得10
16秒前
亦L完成签到,获得积分10
16秒前
16秒前
无辜涵雁发布了新的文献求助10
19秒前
华仔应助思维隋采纳,获得10
20秒前
22秒前
思源应助爱学习的曼卉采纳,获得10
22秒前
24秒前
24秒前
无辜涵雁完成签到,获得积分10
25秒前
幸福大白发布了新的文献求助10
25秒前
25秒前
fff发布了新的文献求助10
27秒前
28秒前
吕不韦发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712