Modeling and design of heterogeneous hierarchical bioinspired spider web structures using generative deep learning and additive manufacturing

计算机科学 生成模型 可扩展性 代表(政治) 人工智能 生成语法 理论计算机科学 数据库 政治 政治学 法学
作者
Wei Lü,Nic A. Lee,Markus J. Buehler
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.05137
摘要

Spider webs are incredible biological structures, comprising thin but strong silk filament and arranged into complex hierarchical architectures with striking mechanical properties (e.g., lightweight but high strength, achieving diverse mechanical responses). While simple 2D orb webs can easily be mimicked, the modeling and synthesis of 3D-based web structures remain challenging, partly due to the rich set of design features. Here we provide a detailed analysis of the heterogenous graph structures of spider webs, and use deep learning as a way to model and then synthesize artificial, bio-inspired 3D web structures. The generative AI models are conditioned based on key geometric parameters (including average edge length, number of nodes, average node degree, and others). To identify graph construction principles, we use inductive representation sampling of large experimentally determined spider web graphs, to yield a dataset that is used to train three conditional generative models: 1) An analog diffusion model inspired by nonequilibrium thermodynamics, with sparse neighbor representation, 2) a discrete diffusion model with full neighbor representation, and 3) an autoregressive transformer architecture with full neighbor representation. All three models are scalable, produce complex, de novo bio-inspired spider web mimics, and successfully construct graphs that meet the design objectives. We further propose algorithm that assembles web samples produced by the generative models into larger-scale structures based on a series of geometric design targets, including helical and parametric shapes, mimicking, and extending natural design principles towards integration with diverging engineering objectives. Several webs are manufactured using 3D printing and tested to assess mechanical properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuaiBsen完成签到,获得积分10
1秒前
CKK完成签到,获得积分10
2秒前
矮小的珠完成签到,获得积分20
3秒前
认真科研中的阿欢完成签到,获得积分10
3秒前
4秒前
5秒前
Felix发布了新的文献求助10
5秒前
8秒前
高高建辉完成签到 ,获得积分10
10秒前
勤恳慕蕊完成签到 ,获得积分10
11秒前
11秒前
13秒前
shenyihui发布了新的文献求助10
13秒前
14秒前
Singularity发布了新的文献求助10
16秒前
xiaoyi发布了新的文献求助10
18秒前
科研通AI2S应助星期八采纳,获得10
21秒前
23秒前
小二郎应助呐呐呐呐呐呐采纳,获得10
24秒前
25秒前
GGDA完成签到 ,获得积分10
25秒前
Ava应助shenyihui采纳,获得10
26秒前
Felix完成签到,获得积分10
27秒前
28秒前
西西发布了新的文献求助10
28秒前
Akim应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
29秒前
29秒前
英姑应助科研通管家采纳,获得10
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
浅尝离白应助科研通管家采纳,获得30
29秒前
赘婿应助科研通管家采纳,获得10
29秒前
乐乐应助科研通管家采纳,获得10
29秒前
不配.应助科研通管家采纳,获得10
29秒前
zoey关注了科研通微信公众号
29秒前
buno应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
Lucas应助科研通管家采纳,获得10
30秒前
30秒前
一只熊发布了新的文献求助10
31秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234215
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216267
捐赠科研通 2548212
什么是DOI,文献DOI怎么找? 1377613
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302