Atomically thin van der Waals materials provide a highly tunable platform for exploring emergent quantum phenomena in solid state systems. Due to their remarkable mechanical strength, one enticing tuning knob is strain. However, the weak strain transfer of graphite and hBN, which are standard components of high-quality vdW devices, poses fundamental challenges for high-strain experiments. Here, we investigate strain transmission in less-explored orthorhombic crystals and find robust transmission up to several percent at cryogenic temperatures. We further show that strain can be efficiently transferred through these crystals to other 2D materials in traditional heterostructure devices. Using this capability, we demonstrate in situ strain and gate control of the optical properties of monolayer WS2 utilizing the high-κ dielectric insulator Bi2SeO5 as a substrate. These results enable the exploration of combined cryo-strain and gate tuning in a variety of layered systems such as moiré heterostructures, air-sensitive 2D magnets and superconductors, and any gated 2D device.