In‐Sensor Computing with Visual‐Tactile Perception Enabled by Mechano‐Optical Artificial Synapse

材料科学 触觉知觉 触觉传感器 突触 感知 纳米技术 人工智能 光电子学 神经科学 计算机科学 机器人 心理学
作者
Jiaxing Guo,Feng Guo,Huijun Zhao,Hang Yang,Xiaona Du,Fei Fan,Weiwei Liu,Yang Zhang,Dong Tu,Jianhua Hao
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202419405
摘要

Abstract In‐sensor computing paradigm holds the promise of realizing rapid and low‐power signal processing. Constructing crossmodal in‐sensor computing systems to emulate human sensory and recognition capabilities has been a persistent pursuit for developing humanoid robotics. Here, an artificial mechano‐optical synapse is reported to implement in‐sensor dynamic computing with visual‐tactile perception. By employing mechanoluminescence (ML) material, direct conversion of the mechanical signals into light emission is achieved and the light is transported to an adjacent photostimulated luminescence (PSL) layer without pre‐ and post‐irradiation. The PSL layer acts as a photon reservoir as well as a processing unit for achieving in‐memory computing. The approach based on ML coupled with PSL material is different from traditional circuit–constrained methods, enabling remote operation and easy accessibility. Individual and synergistic plasticity are elaborately investigated under force and light pulses, including paired‐pulse facilitation, learning behavior, and short‐term and long‐term memory. A multisensory neural network is built for processing the obtained handwritten patterns with a tablet consisting of the device, achieving a recognition accuracy of up to 92.5%. Moreover, material identification has been explored based on visual‐tactile sensing, with an accuracy rate of 98.6%. This work provides a promising strategy to construct in‐sensor computing systems with crossmodal integration and recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助zain采纳,获得10
刚刚
yao完成签到,获得积分10
1秒前
2秒前
ding应助景色采纳,获得10
2秒前
2秒前
4秒前
6秒前
我爱科研完成签到 ,获得积分10
6秒前
7秒前
Hathaway完成签到,获得积分10
7秒前
疯狂的乌完成签到,获得积分10
7秒前
8秒前
研究牲发布了新的文献求助10
8秒前
9秒前
zhh完成签到,获得积分20
9秒前
9秒前
ccc完成签到 ,获得积分10
9秒前
romi8kelly发布了新的文献求助30
10秒前
桐桐应助研究牲采纳,获得10
12秒前
ccorange发布了新的文献求助10
12秒前
li发布了新的文献求助10
12秒前
15秒前
qy完成签到,获得积分10
16秒前
寒冷苗条应助之和采纳,获得10
19秒前
几时有发布了新的文献求助10
20秒前
Fonexy完成签到,获得积分10
20秒前
21秒前
22秒前
小二郎应助jolil采纳,获得10
23秒前
24秒前
zz发布了新的文献求助10
24秒前
24秒前
wangyyan发布了新的文献求助10
25秒前
25秒前
机灵柚子应助几时有采纳,获得10
25秒前
26秒前
孔师发布了新的文献求助10
27秒前
斯文败类应助lee采纳,获得10
28秒前
29秒前
jinxli发布了新的文献求助10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737792
求助须知:如何正确求助?哪些是违规求助? 3281460
关于积分的说明 10025330
捐赠科研通 2998147
什么是DOI,文献DOI怎么找? 1645122
邀请新用户注册赠送积分活动 782547
科研通“疑难数据库(出版商)”最低求助积分说明 749835