SERS/Fluorescence Dual-Modal Imaging Bioprobe for Accurate Diagnosis of Breast Cancer

化学 荧光 对偶(语法数字) 乳腺癌 情态动词 癌症 光学 内科学 高分子化学 医学 艺术 物理 文学类
作者
Yue Hu,Lei Xu,Xinyu Miao,Yujiao Xie,Zhouxu Zhang,Yuening Wang,Wenzhi Ren,Wenting Jiang,Xiaotian Wang,Aiguo Wu,Jie Lin
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c05800
摘要

Early diagnosis and precise identification of breast cancer subtypes are vital. However, current detection methods are often hindered by high costs and complexity. This study aims to develop an efficient and noninvasive method to realize efficient breast cancer detection. First, hexoctahedral gold nanoparticles (Au HNPs) are constructed, which detect molecules with concentrations as low as 10–12 M, and the EF value is ∼3.8 × 108. Then, two optical bioprobes with a surface-enhanced Raman scattering (SERS)-fluorescence (FL) dual-modal function for breast cancer cell detection and subtype identification are designed. These bioprobes exhibit excellent SERS stability since the spectral relative standard deviation (RSD) of the SERS-FL bioprobe achieves a good level of ∼10.4%. Additionally, the clear distinction between breast cancer cells and white blood cells (WBCs) under a fluorescence microscope showed that bioprobes have a good fluorescence imaging ability. More importantly, by creatively stitching the SERS spectra of the two bioprobes, a "symphonic SERS spectra" is constructed, and a linear discriminant analysis (LDA) machine learning algorithm is employed, enabling high-precision classification of breast cancer subtypes with an accuracy of 94%. This study proposes an innovative strategy combined with SERS and FL technology, which provides the possibility for rapid and accurate detection of breast cancer subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻伯云发布了新的文献求助10
刚刚
1秒前
晨晨完成签到,获得积分20
1秒前
iNk应助氢氧采纳,获得10
1秒前
kymipu发布了新的文献求助10
2秒前
可靠晓山完成签到,获得积分20
2秒前
爱吃玉米发布了新的文献求助10
4秒前
在水一方应助fareless采纳,获得10
4秒前
热爱饮食的於菟完成签到,获得积分10
5秒前
CipherSage应助冷酷豌豆采纳,获得10
6秒前
晨晨发布了新的文献求助10
7秒前
FashionBoy应助anzi采纳,获得30
9秒前
9秒前
虚幻伯云完成签到,获得积分10
10秒前
10秒前
菠萝发布了新的文献求助10
10秒前
uii完成签到,获得积分10
11秒前
13秒前
茕凡桃七完成签到,获得积分10
13秒前
搜集达人应助干雅柏采纳,获得10
14秒前
CipherSage应助爱吃玉米采纳,获得10
14秒前
infinity完成签到,获得积分10
17秒前
kkkkkkkkk完成签到,获得积分10
18秒前
lzh353512377完成签到,获得积分10
18秒前
科研通AI5应助chen采纳,获得10
19秒前
20秒前
20秒前
桐桐应助动人的百褶裙采纳,获得10
21秒前
21秒前
烟花应助神光采纳,获得10
21秒前
爱吃玉米完成签到,获得积分10
23秒前
Labubu发布了新的文献求助10
23秒前
26秒前
奇怪的名字完成签到,获得积分10
26秒前
26秒前
干雅柏发布了新的文献求助10
27秒前
27秒前
数学自动化完成签到,获得积分10
28秒前
AbA完成签到,获得积分10
29秒前
瓜子柠檬水完成签到,获得积分10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732389
求助须知:如何正确求助?哪些是违规求助? 3276704
关于积分的说明 9998127
捐赠科研通 2992255
什么是DOI,文献DOI怎么找? 1642086
邀请新用户注册赠送积分活动 780202
科研通“疑难数据库(出版商)”最低求助积分说明 748713