Alzheimer’s disease is a progressive neurodegenerative disorder with limited treatment options. Lingonberry (Vaccinium vitis-idaea L.) has demonstrated neuroprotective and anti-inflammatory properties, yet the underlying mechanisms remain unclear. This study employed network pharmacology, molecular docking, and molecular dynamics simulations to explore the therapeutic potential in Alzheimer’s disease. Pathway analysis identified monoamine oxidase B as a key target involved in serotonergic synapse dysfunction related to Alzheimer’s disease. Molecular docking revealed that ferulic acid, a major bioactive compound in lingonberry, exhibits strong binding affinity to monoamine oxidase B. Further molecular dynamics simulations confirmed the stability of this interaction, highlighting the potential inhibitory effect of ferulic acid on monoamine oxidase B. These findings provide novel insights into the neuroprotective mechanisms of lingonberry and suggest its potential as a natural therapeutic intervention for Alzheimer’s disease.