Progressive Attention-Based Feature Recovery With Scribble Supervision for Saliency Detection in Optical Remote Sensing Image

计算机科学 突出 水准点(测量) 背景(考古学) 可扩展性 特征(语言学) 像素 遥感 人工智能 适应性 职位(财务) 目标检测 对象(语法) 计算机视觉 模式识别(心理学) 地质学 数据库 古生物学 经济 财务 哲学 生物 语言学 生态学 大地测量学
作者
Xuan Li,Yuhang Xu,Lei Ma,Zhenghua Huang,Haiwen Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:5
标识
DOI:10.1109/tgrs.2022.3208618
摘要

Salient object detection (SOD) task for optical remote sensing images (RSIs) plays an important role in many remote sensing applications. Most of the existing methods train their networks depending on a large amount of pixel-wise datasets. However, such expensive and time-consuming training setting prevents the approaches becoming flexible and scalable solutions. To this end, we explore efficient SOD for optical RSIs based on easily accessible weak supervision source. In this work, we propose a novel end-to-end progressive attention-based feature recovery framework with scribble supervision. Specifically, to better locate challenging salient objects in optical RSIs, an object position module (OPM) is proposed to capture and enhance the long-range semantic dependence of objects’ position information, which depends on the complementary attention mechanism. And to restore the entire salient objects, a context refinement module (CRM) is proposed, which extract local contextual information for better propagating high-level semantics to low-level details. Moreover, to improve the adaptability of the network to the changing scenarios of optical RSIs, we propose a salient region correcting (SRC) mechanism to help the predicted salient regions rectify their saliency values by constraining the saliency relationship between predictions from different augmentation models. In addition, due to the lack of dataset for weakly supervised SOD for optical RSIs, we relabeled an existing large-scale optical RSIs dataset with scribbles, namely EORSSD-S. Experimental results on benchmark datasets demonstrate that the proposed method can outperform other weakly supervised SOD methods. And the proposed method even outperformed some fully supervised methods. https://github.com/melonless/PAFR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兜兜完成签到 ,获得积分10
刚刚
刚刚
刚刚
1秒前
3秒前
光亮翠风发布了新的文献求助10
4秒前
YangLi完成签到,获得积分10
5秒前
Str0n完成签到,获得积分10
5秒前
科目三应助略略略采纳,获得10
6秒前
善良的雨筠完成签到,获得积分10
6秒前
汪春花完成签到,获得积分10
6秒前
xia发布了新的文献求助10
7秒前
可爱的香菇完成签到 ,获得积分10
7秒前
YangLi发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
碗碗豆喵完成签到 ,获得积分10
9秒前
nini完成签到,获得积分10
10秒前
lsj386完成签到 ,获得积分10
11秒前
王舒心发布了新的文献求助10
12秒前
13秒前
13秒前
xin发布了新的文献求助10
14秒前
14秒前
一只小艾欧完成签到,获得积分10
15秒前
ytxstrawberry完成签到 ,获得积分10
15秒前
Owen应助昏睡的飞雪采纳,获得10
15秒前
量子星尘发布了新的文献求助10
18秒前
跳跃小伙发布了新的文献求助10
18秒前
光亮翠风发布了新的文献求助10
18秒前
月亮发布了新的文献求助10
19秒前
111完成签到,获得积分10
21秒前
21秒前
兴奋的嚣完成签到 ,获得积分10
23秒前
24秒前
26秒前
26秒前
善学以致用应助TM采纳,获得10
27秒前
slc111发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646393
求助须知:如何正确求助?哪些是违规求助? 4771261
关于积分的说明 15034850
捐赠科研通 4805220
什么是DOI,文献DOI怎么找? 2569528
邀请新用户注册赠送积分活动 1526533
关于科研通互助平台的介绍 1485849