Progressive Attention-Based Feature Recovery With Scribble Supervision for Saliency Detection in Optical Remote Sensing Image

计算机科学 突出 水准点(测量) 背景(考古学) 可扩展性 特征(语言学) 像素 遥感 人工智能 适应性 职位(财务) 目标检测 对象(语法) 计算机视觉 模式识别(心理学) 地质学 数据库 古生物学 经济 财务 哲学 生物 语言学 生态学 大地测量学
作者
Xuan Li,Yuhang Xu,Lei Ma,Zhenghua Huang,Haiwen Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:5
标识
DOI:10.1109/tgrs.2022.3208618
摘要

Salient object detection (SOD) task for optical remote sensing images (RSIs) plays an important role in many remote sensing applications. Most of the existing methods train their networks depending on a large amount of pixel-wise datasets. However, such expensive and time-consuming training setting prevents the approaches becoming flexible and scalable solutions. To this end, we explore efficient SOD for optical RSIs based on easily accessible weak supervision source. In this work, we propose a novel end-to-end progressive attention-based feature recovery framework with scribble supervision. Specifically, to better locate challenging salient objects in optical RSIs, an object position module (OPM) is proposed to capture and enhance the long-range semantic dependence of objects’ position information, which depends on the complementary attention mechanism. And to restore the entire salient objects, a context refinement module (CRM) is proposed, which extract local contextual information for better propagating high-level semantics to low-level details. Moreover, to improve the adaptability of the network to the changing scenarios of optical RSIs, we propose a salient region correcting (SRC) mechanism to help the predicted salient regions rectify their saliency values by constraining the saliency relationship between predictions from different augmentation models. In addition, due to the lack of dataset for weakly supervised SOD for optical RSIs, we relabeled an existing large-scale optical RSIs dataset with scribbles, namely EORSSD-S. Experimental results on benchmark datasets demonstrate that the proposed method can outperform other weakly supervised SOD methods. And the proposed method even outperformed some fully supervised methods. https://github.com/melonless/PAFR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Niu发布了新的文献求助10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
刚刚
jojo应助科研通管家采纳,获得10
1秒前
ZM发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助不打地洞的土拨鼠采纳,获得10
1秒前
nuaa_shy应助科研通管家采纳,获得10
1秒前
jwx应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
渐变映射发布了新的文献求助10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
科研通AI6.1应助嘉人采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
jojo应助科研通管家采纳,获得10
2秒前
y741应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
Ustinian发布了新的文献求助10
3秒前
nuaa_shy应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
执着谷兰发布了新的文献求助20
3秒前
3秒前
nuaa_shy应助科研通管家采纳,获得10
3秒前
3秒前
jwx应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026