Progressive Attention-Based Feature Recovery With Scribble Supervision for Saliency Detection in Optical Remote Sensing Image

计算机科学 突出 水准点(测量) 背景(考古学) 可扩展性 特征(语言学) 像素 遥感 人工智能 适应性 职位(财务) 目标检测 对象(语法) 计算机视觉 模式识别(心理学) 地质学 数据库 古生物学 生态学 语言学 哲学 大地测量学 财务 经济 生物
作者
Xuan Li,Yuhang Xu,Lei Ma,Zhenghua Huang,Haiwen Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:5
标识
DOI:10.1109/tgrs.2022.3208618
摘要

Salient object detection (SOD) task for optical remote sensing images (RSIs) plays an important role in many remote sensing applications. Most of the existing methods train their networks depending on a large amount of pixel-wise datasets. However, such expensive and time-consuming training setting prevents the approaches becoming flexible and scalable solutions. To this end, we explore efficient SOD for optical RSIs based on easily accessible weak supervision source. In this work, we propose a novel end-to-end progressive attention-based feature recovery framework with scribble supervision. Specifically, to better locate challenging salient objects in optical RSIs, an object position module (OPM) is proposed to capture and enhance the long-range semantic dependence of objects’ position information, which depends on the complementary attention mechanism. And to restore the entire salient objects, a context refinement module (CRM) is proposed, which extract local contextual information for better propagating high-level semantics to low-level details. Moreover, to improve the adaptability of the network to the changing scenarios of optical RSIs, we propose a salient region correcting (SRC) mechanism to help the predicted salient regions rectify their saliency values by constraining the saliency relationship between predictions from different augmentation models. In addition, due to the lack of dataset for weakly supervised SOD for optical RSIs, we relabeled an existing large-scale optical RSIs dataset with scribbles, namely EORSSD-S. Experimental results on benchmark datasets demonstrate that the proposed method can outperform other weakly supervised SOD methods. And the proposed method even outperformed some fully supervised methods. https://github.com/melonless/PAFR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wby完成签到,获得积分20
刚刚
yaoccccchen发布了新的文献求助30
1秒前
无花果应助Dr_zsc采纳,获得10
1秒前
充电宝应助transition采纳,获得10
2秒前
bkagyin应助醉月舞阳采纳,获得10
2秒前
2秒前
ni发布了新的文献求助10
3秒前
深情安青应助迷路的茗茗采纳,获得10
3秒前
合适的凝安完成签到,获得积分10
4秒前
4秒前
爆米花应助Jeremy采纳,获得10
4秒前
6秒前
会飞的猪发布了新的文献求助10
6秒前
善学以致用应助见景风采纳,获得10
8秒前
8秒前
10秒前
10秒前
zhw发布了新的文献求助10
11秒前
脑洞疼应助ranqi采纳,获得10
11秒前
boblau完成签到 ,获得积分10
11秒前
Hulda完成签到,获得积分10
12秒前
111完成签到,获得积分10
13秒前
张同学要谦虚完成签到,获得积分10
13秒前
14秒前
斯文败类应助keplek采纳,获得10
15秒前
15秒前
今后应助JunHan采纳,获得10
15秒前
15秒前
16秒前
16秒前
Weining发布了新的文献求助10
17秒前
17秒前
徐徐徐关注了科研通微信公众号
17秒前
上官若男应助合适的凝安采纳,获得10
17秒前
wanci应助mmqq采纳,获得10
17秒前
transition完成签到,获得积分10
18秒前
小马甲应助小飞飞采纳,获得10
19秒前
隐形曼青应助专注乐巧采纳,获得10
19秒前
20秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144560
求助须知:如何正确求助?哪些是违规求助? 2796059
关于积分的说明 7817719
捐赠科研通 2452134
什么是DOI,文献DOI怎么找? 1304892
科研通“疑难数据库(出版商)”最低求助积分说明 627331
版权声明 601432