Progressive Attention-Based Feature Recovery With Scribble Supervision for Saliency Detection in Optical Remote Sensing Image

计算机科学 突出 水准点(测量) 背景(考古学) 可扩展性 特征(语言学) 像素 遥感 人工智能 适应性 职位(财务) 目标检测 对象(语法) 计算机视觉 模式识别(心理学) 地质学 数据库 古生物学 经济 财务 哲学 生物 语言学 生态学 大地测量学
作者
Xuan Li,Yuhang Xu,Lei Ma,Zhenghua Huang,Haiwen Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:5
标识
DOI:10.1109/tgrs.2022.3208618
摘要

Salient object detection (SOD) task for optical remote sensing images (RSIs) plays an important role in many remote sensing applications. Most of the existing methods train their networks depending on a large amount of pixel-wise datasets. However, such expensive and time-consuming training setting prevents the approaches becoming flexible and scalable solutions. To this end, we explore efficient SOD for optical RSIs based on easily accessible weak supervision source. In this work, we propose a novel end-to-end progressive attention-based feature recovery framework with scribble supervision. Specifically, to better locate challenging salient objects in optical RSIs, an object position module (OPM) is proposed to capture and enhance the long-range semantic dependence of objects’ position information, which depends on the complementary attention mechanism. And to restore the entire salient objects, a context refinement module (CRM) is proposed, which extract local contextual information for better propagating high-level semantics to low-level details. Moreover, to improve the adaptability of the network to the changing scenarios of optical RSIs, we propose a salient region correcting (SRC) mechanism to help the predicted salient regions rectify their saliency values by constraining the saliency relationship between predictions from different augmentation models. In addition, due to the lack of dataset for weakly supervised SOD for optical RSIs, we relabeled an existing large-scale optical RSIs dataset with scribbles, namely EORSSD-S. Experimental results on benchmark datasets demonstrate that the proposed method can outperform other weakly supervised SOD methods. And the proposed method even outperformed some fully supervised methods. https://github.com/melonless/PAFR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文龙完成签到,获得积分20
刚刚
ZSC完成签到,获得积分10
刚刚
劳伦斯发布了新的文献求助10
刚刚
lee完成签到 ,获得积分10
1秒前
1秒前
打打应助jackma1采纳,获得10
1秒前
leeza发布了新的文献求助10
1秒前
李健的小迷弟应助leisj采纳,获得10
2秒前
anubisi完成签到,获得积分10
2秒前
搜集达人应助花陵采纳,获得10
2秒前
Decheng_xiao发布了新的文献求助10
3秒前
大模型应助钟雨彤采纳,获得10
3秒前
艾雪给艾雪的求助进行了留言
3秒前
4秒前
4秒前
4秒前
甜美静白发布了新的文献求助10
4秒前
zigzag发布了新的文献求助10
4秒前
WCM完成签到,获得积分10
5秒前
5秒前
马里奥爱科研完成签到,获得积分10
5秒前
5秒前
树下友人完成签到,获得积分10
5秒前
5秒前
HXU发布了新的文献求助10
6秒前
顾矜应助我在祁连山下采纳,获得10
6秒前
6秒前
ace完成签到,获得积分10
7秒前
7秒前
JZ完成签到,获得积分10
8秒前
8秒前
生气来找我完成签到,获得积分20
8秒前
山止川行发布了新的文献求助10
8秒前
9秒前
赘婿应助邢大志采纳,获得30
9秒前
Decheng_xiao完成签到,获得积分10
9秒前
9秒前
Chen发布了新的文献求助10
9秒前
Alan完成签到,获得积分10
10秒前
CipherSage应助usr123采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719543
求助须知:如何正确求助?哪些是违规求助? 5256663
关于积分的说明 15288927
捐赠科研通 4869380
什么是DOI,文献DOI怎么找? 2614754
邀请新用户注册赠送积分活动 1564750
关于科研通互助平台的介绍 1521972