Progressive Attention-Based Feature Recovery With Scribble Supervision for Saliency Detection in Optical Remote Sensing Image

计算机科学 突出 水准点(测量) 背景(考古学) 可扩展性 特征(语言学) 像素 遥感 人工智能 适应性 职位(财务) 目标检测 对象(语法) 计算机视觉 模式识别(心理学) 地质学 数据库 古生物学 经济 财务 哲学 生物 语言学 生态学 大地测量学
作者
Xuan Li,Yuhang Xu,Lei Ma,Zhenghua Huang,Haiwen Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:5
标识
DOI:10.1109/tgrs.2022.3208618
摘要

Salient object detection (SOD) task for optical remote sensing images (RSIs) plays an important role in many remote sensing applications. Most of the existing methods train their networks depending on a large amount of pixel-wise datasets. However, such expensive and time-consuming training setting prevents the approaches becoming flexible and scalable solutions. To this end, we explore efficient SOD for optical RSIs based on easily accessible weak supervision source. In this work, we propose a novel end-to-end progressive attention-based feature recovery framework with scribble supervision. Specifically, to better locate challenging salient objects in optical RSIs, an object position module (OPM) is proposed to capture and enhance the long-range semantic dependence of objects’ position information, which depends on the complementary attention mechanism. And to restore the entire salient objects, a context refinement module (CRM) is proposed, which extract local contextual information for better propagating high-level semantics to low-level details. Moreover, to improve the adaptability of the network to the changing scenarios of optical RSIs, we propose a salient region correcting (SRC) mechanism to help the predicted salient regions rectify their saliency values by constraining the saliency relationship between predictions from different augmentation models. In addition, due to the lack of dataset for weakly supervised SOD for optical RSIs, we relabeled an existing large-scale optical RSIs dataset with scribbles, namely EORSSD-S. Experimental results on benchmark datasets demonstrate that the proposed method can outperform other weakly supervised SOD methods. And the proposed method even outperformed some fully supervised methods. https://github.com/melonless/PAFR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
feng发布了新的文献求助10
1秒前
赘婿应助笑点低的豪采纳,获得10
3秒前
3秒前
卓头OvQ发布了新的文献求助10
3秒前
SciGPT应助sdasd采纳,获得10
4秒前
4秒前
紫麒麟发布了新的文献求助80
4秒前
bkagyin应助迷路的鞅采纳,获得10
4秒前
加缪发布了新的文献求助20
5秒前
jiajia完成签到 ,获得积分10
6秒前
6秒前
所所应助百甲采纳,获得10
6秒前
6秒前
Ava应助Oz采纳,获得10
7秒前
坦率的咖啡豆完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
gwd发布了新的文献求助10
10秒前
机智的绝音完成签到,获得积分10
10秒前
小小发布了新的文献求助10
10秒前
小二郎应助文艺的胖虎采纳,获得10
11秒前
12秒前
leaolf应助风清扬采纳,获得50
13秒前
活泼的诗桃完成签到,获得积分10
14秒前
14秒前
14秒前
dududu发布了新的文献求助10
15秒前
ZQ发布了新的文献求助10
15秒前
木阳完成签到,获得积分10
15秒前
拉格朗日完成签到,获得积分10
16秒前
16秒前
于庭发布了新的文献求助10
17秒前
ColdSunWu完成签到,获得积分20
17秒前
糟糕的铁锤完成签到,获得积分0
18秒前
彭于晏应助害怕的日记本采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109721
求助须知:如何正确求助?哪些是违规求助? 4318341
关于积分的说明 13454127
捐赠科研通 4148336
什么是DOI,文献DOI怎么找? 2273150
邀请新用户注册赠送积分活动 1275295
关于科研通互助平台的介绍 1213562