亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Progressive Attention-Based Feature Recovery With Scribble Supervision for Saliency Detection in Optical Remote Sensing Image

计算机科学 突出 水准点(测量) 背景(考古学) 可扩展性 特征(语言学) 像素 遥感 人工智能 适应性 职位(财务) 目标检测 对象(语法) 计算机视觉 模式识别(心理学) 地质学 数据库 古生物学 经济 财务 哲学 生物 语言学 生态学 大地测量学
作者
Xuan Li,Yuhang Xu,Lei Ma,Zhenghua Huang,Haiwen Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:5
标识
DOI:10.1109/tgrs.2022.3208618
摘要

Salient object detection (SOD) task for optical remote sensing images (RSIs) plays an important role in many remote sensing applications. Most of the existing methods train their networks depending on a large amount of pixel-wise datasets. However, such expensive and time-consuming training setting prevents the approaches becoming flexible and scalable solutions. To this end, we explore efficient SOD for optical RSIs based on easily accessible weak supervision source. In this work, we propose a novel end-to-end progressive attention-based feature recovery framework with scribble supervision. Specifically, to better locate challenging salient objects in optical RSIs, an object position module (OPM) is proposed to capture and enhance the long-range semantic dependence of objects’ position information, which depends on the complementary attention mechanism. And to restore the entire salient objects, a context refinement module (CRM) is proposed, which extract local contextual information for better propagating high-level semantics to low-level details. Moreover, to improve the adaptability of the network to the changing scenarios of optical RSIs, we propose a salient region correcting (SRC) mechanism to help the predicted salient regions rectify their saliency values by constraining the saliency relationship between predictions from different augmentation models. In addition, due to the lack of dataset for weakly supervised SOD for optical RSIs, we relabeled an existing large-scale optical RSIs dataset with scribbles, namely EORSSD-S. Experimental results on benchmark datasets demonstrate that the proposed method can outperform other weakly supervised SOD methods. And the proposed method even outperformed some fully supervised methods. https://github.com/melonless/PAFR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风华正茂完成签到,获得积分10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
轻松大王应助科研通管家采纳,获得10
刚刚
劉浏琉应助科研通管家采纳,获得10
刚刚
morena应助科研通管家采纳,获得20
刚刚
orixero应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
1秒前
Fiona完成签到,获得积分10
1秒前
柒末仙发布了新的文献求助20
17秒前
jacky发布了新的文献求助10
20秒前
sunfield2014完成签到 ,获得积分10
24秒前
34秒前
35秒前
Owen应助jacky采纳,获得10
35秒前
山楂看海完成签到,获得积分10
35秒前
Li发布了新的文献求助10
38秒前
香蕉觅云应助yunshui采纳,获得10
41秒前
李爱国应助善良的花菜采纳,获得10
44秒前
Zhou完成签到,获得积分10
44秒前
世界是圆圆的给世界是圆圆的的求助进行了留言
45秒前
啦啦啦啦发布了新的文献求助10
46秒前
啦啦啦啦完成签到,获得积分10
59秒前
1分钟前
韩国慈禧太后完成签到,获得积分10
1分钟前
yunshui发布了新的文献求助10
1分钟前
1分钟前
彭于晏应助知知采纳,获得10
1分钟前
彭于晏应助快乐的冰淇淋采纳,获得10
1分钟前
1分钟前
嘟嘟嘟嘟发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
知知发布了新的文献求助10
1分钟前
梨凉完成签到,获得积分10
1分钟前
好好好发布了新的文献求助10
1分钟前
传奇3应助123456采纳,获得10
1分钟前
劉浏琉应助科研通管家采纳,获得10
2分钟前
轻松大王应助科研通管家采纳,获得10
2分钟前
文献高手完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788299
求助须知:如何正确求助?哪些是违规求助? 5706062
关于积分的说明 15473390
捐赠科研通 4916398
什么是DOI,文献DOI怎么找? 2646316
邀请新用户注册赠送积分活动 1593974
关于科研通互助平台的介绍 1548368