Optimized lightweight CA-transformer: Using transformer for fine-grained visual categorization

计算机科学 过度拟合 变压器 人工智能 特征提取 机器学习 安全性令牌 模式识别(心理学) 人工神经网络 电压 工程类 计算机安全 电气工程
作者
Haiqing Wang,Shuqi Shang,Dongwei Wang,Xiaoning He,Kai Feng,Hao Zhu,Cheng‐Peng Li,Yuetao Wang
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:71: 101827-101827 被引量:5
标识
DOI:10.1016/j.ecoinf.2022.101827
摘要

As a rapidly developing research direction in computer vision (CV), related algorithms such as image classification and object detection have achieved inevitable research progress. Improving the accuracy and efficiency of algorithms for fine-grained identification of plant diseases and birds in agriculture is essential to the dynamic monitoring of agricultural environments. In this study, based on the computer vision detection and classification algorithm, combined with the architecture and ideas of the CNN model, the mainstream Transformer model was optimized, and then the CA-Transformer (Transformer Combined with Channel Attention) model was proposed to improve the ability to identify and classify critical areas. The main work is as follows: (1) The C-Attention mechanism is proposed to strengthen the feature information extraction within the patch and the communication between feature information so that the entire network can be fully attentive while reducing the computational overhead; (2) The weight-sharing method is proposed to transfer parameters between different layers, improve the reusability of model data, and at the same time increase the knowledge distillation link to reduce problems such as excessive parameters and overfitting; (3) Token Labeling is proposed to generate score labels according to the position of each Token, and the total loss function of this study is proposed according to the CA-Transformer model structure. The performance of the CA-Transformer model proposed in this study is compared with the current mainstream models on datasets of different scales, and ablation experiments are performed. The results show that the accuracy and mIoU of the CA-Transformer proposed in this study reach 82.89% and 53.17MS, respectively, and have good transfer learning ability, indicating that the model has good performance in fine-grained visual categorization tasks and can be used in ecological information. In the context of more diverse ecological information, this study can provide reference and inspiration for the practical application of information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天快乐应助sln采纳,获得10
2秒前
针眼画师完成签到,获得积分10
2秒前
下雨完成签到,获得积分10
3秒前
莫问今生完成签到,获得积分10
3秒前
想打首发的雷完成签到,获得积分10
5秒前
小乔发布了新的文献求助10
6秒前
深情安青应助lio采纳,获得10
7秒前
7秒前
布丁果冻完成签到,获得积分10
9秒前
晚风完成签到,获得积分10
9秒前
看不见的哇塞完成签到,获得积分20
9秒前
12秒前
没汤汤不饭饭完成签到,获得积分10
12秒前
马超放烟花完成签到 ,获得积分10
12秒前
hhhh发布了新的文献求助10
13秒前
伊叶之丘完成签到 ,获得积分10
13秒前
陈cf77发布了新的文献求助30
14秒前
16秒前
研友_Z6Q45n应助萌兰采纳,获得10
16秒前
18秒前
sheep完成签到,获得积分10
19秒前
Grace_Peng关注了科研通微信公众号
19秒前
20秒前
20秒前
ni完成签到 ,获得积分10
21秒前
科研通AI2S应助Just_do_it采纳,获得10
21秒前
顾矜应助奶茶咖啡冻采纳,获得10
23秒前
23秒前
sln发布了新的文献求助10
23秒前
单纯的易文完成签到 ,获得积分10
24秒前
乐乐应助yy采纳,获得10
25秒前
席江海完成签到,获得积分10
25秒前
Greenhand完成签到,获得积分10
27秒前
小豆芽发布了新的文献求助10
27秒前
贰鸟应助山河采纳,获得20
27秒前
29秒前
30秒前
30秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672688
求助须知:如何正确求助?哪些是违规求助? 3228855
关于积分的说明 9782298
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610759
邀请新用户注册赠送积分活动 760719
科研通“疑难数据库(出版商)”最低求助积分说明 736198