A multi-path traffic-covering pollution routing model with simultaneous pickup and delivery

地铁列车时刻表 车辆路径问题 交通拥挤 运输工程 计算机科学 布线(电子设计自动化) 运筹学 温室气体 燃料效率 聚类分析 路径(计算) 工程类 计算机网络 汽车工程 生物 操作系统 机器学习 生态学
作者
Seyyed‐Mahdi Hosseini‐Motlagh,Maryam Farahmand,Mina Nouri-Harzvili
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:173: 108644-108644 被引量:2
标识
DOI:10.1016/j.cie.2022.108644
摘要

Urban traffic in many developing countries has affected travel time and fuel costs, causing disturbances in the transportation schedule of companies dealing with logistic issues. The resulting environmental impact is another driver forcing these companies to reconsider their transportation schedule. Conventional pollution routing problems (PRPs) try to achieve a balance among greenhouse gas (GHG) emissions, fuel consumption, travel time, and distance. These models are not developed to cover traffic congestion and optimize speed on each route, while such factors affect the routing costs. To fill this gap, we propose a multi-path traffic-covering PRP with simultaneous pickup and delivery, which finds alternative paths in case of traffic congestion and determines the lowest-cost routes. Accordingly, we contribute to the multi-path vehicle routing models, which have mainly considered predetermined alternative routes between the nodes instead of providing algorithms for finding alternative low-traffic routes. We apply a four-phase metaheuristic algorithm to solve the model, containing a Clustering-based Floyd-Warshall (CFW) algorithm developed through the K-means method to create a network graph around the high-traffic path and find the alternative paths. The results of analyzing the model indicated that the total costs decreased by about 25% compared to the model without alternative paths. This improved level of much more than the typical range of 2–5% improvement showed the model contributions to the prior research using the same initial conditions but different solution methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun发布了新的文献求助30
1秒前
1秒前
KBYer完成签到,获得积分10
1秒前
FashionBoy应助阳阳采纳,获得10
1秒前
许多知识发布了新的文献求助10
2秒前
苏源智完成签到,获得积分10
2秒前
Andy完成签到 ,获得积分10
4秒前
明理晓霜发布了新的文献求助10
6秒前
ZHANGMANLI0422关注了科研通微信公众号
6秒前
M先生发布了新的文献求助30
7秒前
FashionBoy应助许多知识采纳,获得10
8秒前
Poyd完成签到,获得积分10
11秒前
11秒前
故意的傲玉应助tao_blue采纳,获得10
12秒前
12秒前
kid1912完成签到,获得积分0
12秒前
小马甲应助一网小海蜇采纳,获得10
15秒前
专一的笑阳完成签到 ,获得积分10
15秒前
xuesensu完成签到 ,获得积分10
19秒前
豌豆完成签到,获得积分10
20秒前
M先生完成签到,获得积分10
20秒前
21秒前
23秒前
科研通AI5应助sun采纳,获得10
23秒前
shitzu完成签到 ,获得积分10
24秒前
choco发布了新的文献求助10
26秒前
27秒前
李健的小迷弟应助sun采纳,获得10
27秒前
Jzhang应助liyuchen采纳,获得10
27秒前
魏伯安发布了新的文献求助30
27秒前
jjjjjj发布了新的文献求助30
29秒前
30秒前
伯赏诗霜发布了新的文献求助10
30秒前
糟糕的鹏飞完成签到 ,获得积分10
31秒前
31秒前
欢呼凡旋完成签到,获得积分10
32秒前
韩邹光完成签到,获得积分10
34秒前
xg发布了新的文献求助10
34秒前
35秒前
dktrrrr完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849