A multi-path traffic-covering pollution routing model with simultaneous pickup and delivery

地铁列车时刻表 车辆路径问题 交通拥挤 运输工程 计算机科学 布线(电子设计自动化) 运筹学 温室气体 燃料效率 聚类分析 路径(计算) 工程类 计算机网络 汽车工程 生物 操作系统 机器学习 生态学
作者
Seyyed‐Mahdi Hosseini‐Motlagh,Maryam Farahmand,Mina Nouri-Harzvili
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:173: 108644-108644 被引量:2
标识
DOI:10.1016/j.cie.2022.108644
摘要

Urban traffic in many developing countries has affected travel time and fuel costs, causing disturbances in the transportation schedule of companies dealing with logistic issues. The resulting environmental impact is another driver forcing these companies to reconsider their transportation schedule. Conventional pollution routing problems (PRPs) try to achieve a balance among greenhouse gas (GHG) emissions, fuel consumption, travel time, and distance. These models are not developed to cover traffic congestion and optimize speed on each route, while such factors affect the routing costs. To fill this gap, we propose a multi-path traffic-covering PRP with simultaneous pickup and delivery, which finds alternative paths in case of traffic congestion and determines the lowest-cost routes. Accordingly, we contribute to the multi-path vehicle routing models, which have mainly considered predetermined alternative routes between the nodes instead of providing algorithms for finding alternative low-traffic routes. We apply a four-phase metaheuristic algorithm to solve the model, containing a Clustering-based Floyd-Warshall (CFW) algorithm developed through the K-means method to create a network graph around the high-traffic path and find the alternative paths. The results of analyzing the model indicated that the total costs decreased by about 25% compared to the model without alternative paths. This improved level of much more than the typical range of 2–5% improvement showed the model contributions to the prior research using the same initial conditions but different solution methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
英姑应助cx采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
Hilda007应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
hugh完成签到 ,获得积分10
2秒前
自由的新波完成签到 ,获得积分10
2秒前
3秒前
Nancy发布了新的文献求助10
4秒前
赵赵发布了新的文献求助10
4秒前
小熊猫发布了新的文献求助10
4秒前
含蓄虔纹完成签到,获得积分10
5秒前
一百度黑发布了新的文献求助10
5秒前
虚拟的如容完成签到,获得积分20
5秒前
想要用不完的积分完成签到,获得积分10
6秒前
白鸽鸽完成签到,获得积分10
6秒前
四不像会麋鹿完成签到,获得积分10
6秒前
zzz完成签到 ,获得积分10
7秒前
罗大侠完成签到,获得积分10
8秒前
Sue完成签到 ,获得积分10
8秒前
zzf完成签到 ,获得积分10
9秒前
vitaminbbc发布了新的文献求助10
9秒前
lantywan完成签到,获得积分10
10秒前
我是老大应助一百度黑采纳,获得10
10秒前
10秒前
风吹麦田应助赵赵采纳,获得20
10秒前
10秒前
初心完成签到 ,获得积分10
11秒前
英姑应助小怪兽采纳,获得10
12秒前
丑麒完成签到,获得积分10
13秒前
13秒前
机智篮球完成签到,获得积分10
13秒前
大猫发布了新的文献求助10
13秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580621
求助须知:如何正确求助?哪些是违规求助? 4665406
关于积分的说明 14756133
捐赠科研通 4606909
什么是DOI,文献DOI怎么找? 2528092
邀请新用户注册赠送积分活动 1497385
关于科研通互助平台的介绍 1466355