ResNet models for rapid identification of species and geographical origin of wild boletes from Yunnan, and MaxEnt model for delineation of potential distribution

物种分布 分布(数学) 鉴定(生物学) 环境生态位模型 地理 地图学 生态学 生物 数学 栖息地 数学分析 生态位
作者
Xiong Chen,Honggao Liu,Jie Qing Li,Yuanzhong Wang
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:36 (11) 被引量:6
标识
DOI:10.1002/cem.3447
摘要

Abstract Yunnan is known for its rich biodiversity and is known as the Wild Mushroom Kingdom. Boletes are a world‐renowned wild edible mushroom, with unique sensory characteristics, nutritional value and medicinal value extraordinary. However, the species and geographical origin of boletes influence their price and quality. In this study, a method was developed to identify species and geographical origin simultaneously. Therefore, Fourier transform near‐infrared (FT‐NIR) data sets of boletes were collected and converted to two‐dimensional correlation spectroscopy (2D‐COS). On this basis, the species and geographic origins of boletes were identified using Residual neural network (ResNet) image analysis model. The results showed that FT‐NIR could identify boletes species and geographical origins, 7000–4000 cm −1 band was more suitable for species identification, 7000–5300 cm −1 band was more suitable for geographical origins identification. In addition, the environmental factors with high contribution to the distribution of boletes were screened based on the maximum entropy (MaxEnt) model. This allows characterization of the potential geographic distribution of boletes. The results showed that precipitation factors played a vital role in its distribution and might even be responsible for the difference in chemical composition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼衣完成签到 ,获得积分10
刚刚
luyunxing完成签到,获得积分10
刚刚
刚刚
zxt完成签到,获得积分10
刚刚
科研通AI6应助孤独的猎手采纳,获得10
1秒前
Yummy完成签到,获得积分10
2秒前
Annnnnn完成签到,获得积分10
2秒前
echo完成签到,获得积分10
2秒前
yibaozhangfa完成签到,获得积分10
4秒前
11发布了新的文献求助30
4秒前
肝不动的牛马完成签到,获得积分10
4秒前
ding应助ruqinmq采纳,获得10
4秒前
桐桐应助Kleen采纳,获得10
4秒前
maoyi发布了新的文献求助10
4秒前
小luc发布了新的文献求助10
5秒前
李瑶函完成签到,获得积分10
5秒前
AN完成签到,获得积分10
5秒前
baomingqiu完成签到 ,获得积分10
5秒前
15940203654完成签到 ,获得积分10
5秒前
斯文败类应助举个栗子8采纳,获得10
5秒前
adou完成签到,获得积分20
6秒前
bjyx完成签到 ,获得积分10
6秒前
ks完成签到,获得积分10
6秒前
追寻翩跹完成签到,获得积分10
6秒前
tigger发布了新的文献求助10
6秒前
du完成签到 ,获得积分10
7秒前
Attendre完成签到 ,获得积分10
7秒前
dida完成签到,获得积分10
8秒前
ler完成签到,获得积分20
8秒前
无语的沛春完成签到,获得积分10
8秒前
周周完成签到 ,获得积分10
8秒前
小蚂蚁完成签到,获得积分10
8秒前
8秒前
甄昕完成签到,获得积分10
9秒前
香蕉觅云应助优雅访曼采纳,获得10
9秒前
整齐醉冬完成签到,获得积分10
9秒前
静静小可爱完成签到,获得积分10
9秒前
10秒前
长得像杨蕃应助zzzzlll采纳,获得10
10秒前
取昵称好难完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977