Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study

医学 麦克内马尔试验 胰腺癌 接收机工作特性 胰腺 放射科 人口 核医学 癌症 内科学 数学 环境卫生 统计
作者
Po‐Ting Chen,Ting-Hui Wu,Po‐Chuan Wang,Dawei Chang,Kao‐Lang Liu,Ming‐Shiang Wu,Holger R. Roth,Wen‐Jeng Lee,Wei‐Chih Liao,Weichung Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (1): 172-182 被引量:90
标识
DOI:10.1148/radiol.220152
摘要

Background Approximately 40% of pancreatic tumors smaller than 2 cm are missed at abdominal CT. Purpose To develop and to validate a deep learning (DL)-based tool able to detect pancreatic cancer at CT. Materials and Methods Retrospectively collected contrast-enhanced CT studies in patients diagnosed with pancreatic cancer between January 2006 and July 2018 were compared with CT studies of individuals with a normal pancreas (control group) obtained between January 2004 and December 2019. An end-to-end tool comprising a segmentation convolutional neural network (CNN) and a classifier ensembling five CNNs was developed and validated in the internal test set and a nationwide real-world validation set. The sensitivities of the computer-aided detection (CAD) tool and radiologist interpretation were compared using the McNemar test. Results A total of 546 patients with pancreatic cancer (mean age, 65 years ± 12 [SD], 297 men) and 733 control subjects were randomly divided into training, validation, and test sets. In the internal test set, the DL tool achieved 89.9% (98 of 109; 95% CI: 82.7, 94.9) sensitivity and 95.9% (141 of 147; 95% CI: 91.3, 98.5) specificity (area under the receiver operating characteristic curve [AUC], 0.96; 95% CI: 0.94, 0.99), without a significant difference (P = .11) in sensitivity compared with the original radiologist report (96.1% [98 of 102]; 95% CI: 90.3, 98.9). In a test set of 1473 real-world CT studies (669 malignant, 804 control) from institutions throughout Taiwan, the DL tool distinguished between CT malignant and control studies with 89.7% (600 of 669; 95% CI: 87.1, 91.9) sensitivity and 92.8% specificity (746 of 804; 95% CI: 90.8, 94.5) (AUC, 0.95; 95% CI: 0.94, 0.96), with 74.7% (68 of 91; 95% CI: 64.5, 83.3) sensitivity for malignancies smaller than 2 cm. Conclusion The deep learning-based tool enabled accurate detection of pancreatic cancer on CT scans, with reasonable sensitivity for tumors smaller than 2 cm. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Aisen and Rodrigues in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
caohai完成签到,获得积分10
1秒前
我是老大应助lslfreedom采纳,获得10
1秒前
ycjin完成签到,获得积分20
1秒前
1秒前
Joyj99完成签到,获得积分10
2秒前
EvenCai应助忆枫采纳,获得10
3秒前
Hello应助jagger采纳,获得30
3秒前
NMR完成签到,获得积分10
3秒前
尹天奇完成签到,获得积分10
4秒前
4秒前
NoMigraine发布了新的文献求助10
4秒前
lutos发布了新的文献求助10
4秒前
5秒前
还单身的香菇完成签到,获得积分10
5秒前
小妤丸子发布了新的文献求助10
6秒前
血狼旭魔发布了新的文献求助10
6秒前
NexusExplorer应助ljx采纳,获得10
6秒前
6秒前
7秒前
7秒前
深情安青应助xio采纳,获得10
7秒前
善良的远锋完成签到,获得积分10
9秒前
二三发布了新的文献求助10
9秒前
9秒前
paperSCI发布了新的文献求助10
9秒前
9秒前
子寒发布了新的文献求助10
9秒前
鱼鱼关注了科研通微信公众号
10秒前
赵123发布了新的文献求助10
11秒前
11秒前
笑柳发布了新的文献求助10
11秒前
FashionBoy应助sunny采纳,获得10
12秒前
jagger应助文件撤销了驳回
12秒前
SSY发布了新的文献求助10
12秒前
12秒前
所所应助第三人称采纳,获得30
12秒前
ding完成签到,获得积分10
12秒前
英勇皮卡丘完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074