亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study

医学 麦克内马尔试验 胰腺癌 接收机工作特性 胰腺 放射科 人口 核医学 癌症 内科学 数学 环境卫生 统计
作者
Po‐Ting Chen,Tinghui Wu,Po‐Chuan Wang,Dawei Chang,Kao‐Lang Liu,Ming‐Shiang Wu,Holger R. Roth,Wen‐Jeng Lee,Wei‐Chih Liao,Weichung Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (1): 172-182 被引量:134
标识
DOI:10.1148/radiol.220152
摘要

Background Approximately 40% of pancreatic tumors smaller than 2 cm are missed at abdominal CT. Purpose To develop and to validate a deep learning (DL)-based tool able to detect pancreatic cancer at CT. Materials and Methods Retrospectively collected contrast-enhanced CT studies in patients diagnosed with pancreatic cancer between January 2006 and July 2018 were compared with CT studies of individuals with a normal pancreas (control group) obtained between January 2004 and December 2019. An end-to-end tool comprising a segmentation convolutional neural network (CNN) and a classifier ensembling five CNNs was developed and validated in the internal test set and a nationwide real-world validation set. The sensitivities of the computer-aided detection (CAD) tool and radiologist interpretation were compared using the McNemar test. Results A total of 546 patients with pancreatic cancer (mean age, 65 years ± 12 [SD], 297 men) and 733 control subjects were randomly divided into training, validation, and test sets. In the internal test set, the DL tool achieved 89.9% (98 of 109; 95% CI: 82.7, 94.9) sensitivity and 95.9% (141 of 147; 95% CI: 91.3, 98.5) specificity (area under the receiver operating characteristic curve [AUC], 0.96; 95% CI: 0.94, 0.99), without a significant difference (P = .11) in sensitivity compared with the original radiologist report (96.1% [98 of 102]; 95% CI: 90.3, 98.9). In a test set of 1473 real-world CT studies (669 malignant, 804 control) from institutions throughout Taiwan, the DL tool distinguished between CT malignant and control studies with 89.7% (600 of 669; 95% CI: 87.1, 91.9) sensitivity and 92.8% specificity (746 of 804; 95% CI: 90.8, 94.5) (AUC, 0.95; 95% CI: 0.94, 0.96), with 74.7% (68 of 91; 95% CI: 64.5, 83.3) sensitivity for malignancies smaller than 2 cm. Conclusion The deep learning-based tool enabled accurate detection of pancreatic cancer on CT scans, with reasonable sensitivity for tumors smaller than 2 cm. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Aisen and Rodrigues in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顶顶顶完成签到,获得积分20
刚刚
1秒前
2秒前
Bigqiaqia发布了新的文献求助10
3秒前
顶顶顶发布了新的文献求助10
4秒前
xiaoxingxing发布了新的文献求助30
6秒前
无产阶级科学者完成签到,获得积分10
17秒前
yyds举报胡子求助涉嫌违规
19秒前
20秒前
科研通AI2S应助柠檬采纳,获得10
21秒前
samsijyu发布了新的文献求助10
21秒前
Am1r发布了新的文献求助10
22秒前
负责语海发布了新的文献求助10
26秒前
斯文败类应助顶顶顶采纳,获得10
28秒前
绿色植物发布了新的文献求助10
32秒前
科目三应助Hao采纳,获得10
34秒前
星辰大海应助负责语海采纳,获得10
34秒前
JamesPei应助xlxu采纳,获得10
35秒前
35秒前
MiaCong完成签到 ,获得积分10
35秒前
猫猫完成签到 ,获得积分10
36秒前
充电宝应助科研通管家采纳,获得10
41秒前
41秒前
英俊的铭应助科研通管家采纳,获得10
41秒前
41秒前
43秒前
白小超人完成签到 ,获得积分10
47秒前
涅爹完成签到 ,获得积分10
48秒前
Hao发布了新的文献求助10
49秒前
52秒前
52秒前
所所应助懒骨头兄采纳,获得10
54秒前
斯文的楷瑞完成签到,获得积分10
58秒前
hahahan完成签到 ,获得积分10
1分钟前
凡舍完成签到 ,获得积分10
1分钟前
渟柠完成签到,获得积分20
1分钟前
桐桐应助张萌采纳,获得10
1分钟前
Am1r完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701328
关于积分的说明 14913361
捐赠科研通 4747615
什么是DOI,文献DOI怎么找? 2549174
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049