共晶
拉曼光谱
亚稳态
多态性(计算机科学)
光谱学
分析化学(期刊)
化学
戊二酸
材料科学
结晶学
分子
色谱法
有机化学
光学
氢键
量子力学
基因
生物化学
物理
基因型
作者
Motoki Inoue,Takumi Osada,Hiroshi Hisada,Tatsuo Koide,Toshiro Fukami,Anjan Roy,James Carriere
标识
DOI:10.1016/j.xphs.2022.09.009
摘要
Abstract
Cocrystallization is a technique for improving the physical properties of active pharmaceutical ingredients. However, cocrystals can transform into more stable polymorphs as well as dissociate to original materials. Therefore, an analytical technique is required to determine the polymorphic transformation quickly and accurately in tablets. The purpose of this study is to develop a method to monitor cocrystal polymorphs in model tablets using transmission low-frequency Raman spectroscopy. The tablets, consisting of only metastable polymorphs of caffeine-glutaric acid cocrystals, were stored under various relative humidity levels. The composition of the cocrystal polymorphs were calculated from a calibration curve relating the actual composition to the predicted values calculated by partial least squares regression processing of low-frequency Raman spectra. The metastable form gradually converted to a stable form, and polymorphic phase transformation occurred with increasing relative humidity. Ninety-six percent of the metastable form converted into a stable form stored at 25 °C after 3 h at 95% RH. In conclusion, transmission low-frequency Raman spectroscopy can be used to quantitatively monitor cocrystal polymorphs. This technique is one of the candidate techniques to quantifiably evaluate the physico-chemical stability of cocrystal polymorphs in tablets.
科研通智能强力驱动
Strongly Powered by AbleSci AI