MVSFormer: Multi-View Stereo by Learning Robust Image Features and Temperature-based Depth

计算机科学 人工智能 特征(语言学) 棱锥(几何) 特征学习 卷积神经网络 一般化 机器学习 深度学习 模式识别(心理学) 数学 数学分析 哲学 语言学 几何学
作者
Chenjie Cao,Xinlin Ren,Yanwei Fu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2208.02541
摘要

Feature representation learning is the key recipe for learning-based Multi-View Stereo (MVS). As the common feature extractor of learning-based MVS, vanilla Feature Pyramid Networks (FPNs) suffer from discouraged feature representations for reflection and texture-less areas, which limits the generalization of MVS. Even FPNs worked with pre-trained Convolutional Neural Networks (CNNs) fail to tackle these issues. On the other hand, Vision Transformers (ViTs) have achieved prominent success in many 2D vision tasks. Thus we ask whether ViTs can facilitate feature learning in MVS? In this paper, we propose a pre-trained ViT enhanced MVS network called MVSFormer, which can learn more reliable feature representations benefited by informative priors from ViT. The finetuned MVSFormer with hierarchical ViTs of efficient attention mechanisms can achieve prominent improvement based on FPNs. Besides, the alternative MVSFormer with frozen ViT weights is further proposed. This largely alleviates the training cost with competitive performance strengthened by the attention map from the self-distillation pre-training. MVSFormer can be generalized to various input resolutions with efficient multi-scale training strengthened by gradient accumulation. Moreover, we discuss the merits and drawbacks of classification and regression-based MVS methods, and further propose to unify them with a temperature-based strategy. MVSFormer achieves state-of-the-art performance on the DTU dataset. Particularly, MVSFormer ranks as Top-1 on both intermediate and advanced sets of the highly competitive Tanks-and-Temples leaderboard.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
yatou5651发布了新的文献求助10
刚刚
1秒前
乐乐应助koi采纳,获得10
1秒前
asdfqwer发布了新的文献求助10
1秒前
1秒前
chemhub完成签到,获得积分10
1秒前
杜杜完成签到,获得积分10
2秒前
周小慧发布了新的文献求助10
2秒前
2秒前
自由寻菱完成签到 ,获得积分10
2秒前
3秒前
Akim应助丘奇采纳,获得10
4秒前
美丽小蕾发布了新的文献求助10
4秒前
dingdong发布了新的文献求助10
4秒前
ZX完成签到 ,获得积分10
4秒前
九川发布了新的文献求助10
4秒前
5秒前
5秒前
SandyH关注了科研通微信公众号
6秒前
6秒前
公西元柏发布了新的文献求助10
6秒前
碱性沉默发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
SciGPT应助猪猪采纳,获得10
7秒前
123发布了新的文献求助10
7秒前
独特微笑完成签到,获得积分10
7秒前
7秒前
nuonuo完成签到,获得积分10
8秒前
⊙▽⊙完成签到,获得积分10
8秒前
9秒前
MHB发布了新的文献求助50
9秒前
汉堡包应助马保国123采纳,获得10
9秒前
落晨发布了新的文献求助10
9秒前
Hello应助郑开司09采纳,获得10
10秒前
Jiangnj完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762