MVSFormer: Multi-View Stereo by Learning Robust Image Features and Temperature-based Depth

计算机科学 人工智能 特征(语言学) 棱锥(几何) 特征学习 卷积神经网络 一般化 机器学习 深度学习 模式识别(心理学) 数学 几何学 语言学 数学分析 哲学
作者
Chenjie Cao,Xinlin Ren,Yanwei Fu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2208.02541
摘要

Feature representation learning is the key recipe for learning-based Multi-View Stereo (MVS). As the common feature extractor of learning-based MVS, vanilla Feature Pyramid Networks (FPNs) suffer from discouraged feature representations for reflection and texture-less areas, which limits the generalization of MVS. Even FPNs worked with pre-trained Convolutional Neural Networks (CNNs) fail to tackle these issues. On the other hand, Vision Transformers (ViTs) have achieved prominent success in many 2D vision tasks. Thus we ask whether ViTs can facilitate feature learning in MVS? In this paper, we propose a pre-trained ViT enhanced MVS network called MVSFormer, which can learn more reliable feature representations benefited by informative priors from ViT. The finetuned MVSFormer with hierarchical ViTs of efficient attention mechanisms can achieve prominent improvement based on FPNs. Besides, the alternative MVSFormer with frozen ViT weights is further proposed. This largely alleviates the training cost with competitive performance strengthened by the attention map from the self-distillation pre-training. MVSFormer can be generalized to various input resolutions with efficient multi-scale training strengthened by gradient accumulation. Moreover, we discuss the merits and drawbacks of classification and regression-based MVS methods, and further propose to unify them with a temperature-based strategy. MVSFormer achieves state-of-the-art performance on the DTU dataset. Particularly, MVSFormer ranks as Top-1 on both intermediate and advanced sets of the highly competitive Tanks-and-Temples leaderboard.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助王小胖采纳,获得10
2秒前
华仔应助小柠檬采纳,获得10
3秒前
diipgzfh完成签到,获得积分10
3秒前
岑岑岑完成签到,获得积分10
4秒前
卡思完成签到,获得积分10
5秒前
5秒前
Su发布了新的文献求助10
5秒前
汉堡包应助王九八采纳,获得10
5秒前
5秒前
vvei发布了新的文献求助10
6秒前
6秒前
SCT发布了新的文献求助10
6秒前
Alvin发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
嗯嗯发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
123完成签到,获得积分10
10秒前
Rainbow完成签到,获得积分10
10秒前
852应助sandy采纳,获得10
10秒前
冷静的铅笔应助asdfqwer采纳,获得10
11秒前
一路高飛发布了新的文献求助30
11秒前
郝老头完成签到,获得积分0
12秒前
WX发布了新的文献求助10
12秒前
李爱国应助laura采纳,获得10
15秒前
Weining发布了新的文献求助10
15秒前
16秒前
Harper发布了新的文献求助30
16秒前
小小沙发布了新的文献求助10
16秒前
李健的粉丝团团长应助wwww采纳,获得10
17秒前
哭泣妙海完成签到,获得积分10
17秒前
徐徐徐应助陈梓采纳,获得10
17秒前
He完成签到,获得积分10
18秒前
GC完成签到,获得积分10
19秒前
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655