Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer

免疫疗法 靶向治疗 医学 肺癌 癌症 肿瘤科 恶性肿瘤 内科学 无线电技术 放射科
作者
Xiaomeng Yin,Hu Liao,Yun Hong,Nan Lin,Shen Li,Yu Xiang,Xuelei Ma
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:86: 146-159 被引量:45
标识
DOI:10.1016/j.semcancer.2022.08.002
摘要

Lung cancer accounts for the main proportion of malignancy-related deaths and most patients are diagnosed at an advanced stage. Immunotherapy and targeted therapy have great advances in application in clinics to treat lung cancer patients, yet the efficacy is unstable. The response rate of these therapies varies among patients. Some biomarkers have been proposed to predict the outcomes of immunotherapy and targeted therapy, including programmed cell death-ligand 1 (PD-L1) expression and oncogene mutations. Nevertheless, the detection tests are invasive, time-consuming, and have high demands on tumor tissue. The predictive performance of conventional biomarkers is also unsatisfactory. Therefore, novel biomarkers are needed to effectively predict the outcomes of immunotherapy and targeted therapy. The application of artificial intelligence (AI) can be a possible solution, as it has several advantages. AI can help identify features that are unable to be used by humans and perform repetitive tasks. By combining AI methods with radiomics, pathology, genomics, transcriptomics, proteomics, and clinical data, the integrated model has shown predictive value in immunotherapy and targeted therapy, which significantly improves the precision treatment of lung cancer patients. Herein, we reviewed the application of AI in predicting the outcomes of immunotherapy and targeted therapy in lung cancer patients, and discussed the challenges and future directions in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色的芝麻完成签到,获得积分10
刚刚
刚刚
1秒前
hhy发布了新的文献求助10
1秒前
2秒前
5秒前
5秒前
594778089发布了新的文献求助10
5秒前
5秒前
zy95282发布了新的文献求助10
7秒前
...发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
Owen应助彩色的芝麻采纳,获得10
11秒前
清爽的绫完成签到,获得积分10
12秒前
12秒前
12秒前
领导范儿应助off采纳,获得10
13秒前
kuzzi发布了新的文献求助10
14秒前
Hrx完成签到,获得积分10
14秒前
15秒前
16秒前
123发布了新的文献求助10
17秒前
KINDMAGIC发布了新的文献求助10
19秒前
...完成签到,获得积分10
20秒前
慕青应助Murphy采纳,获得30
21秒前
从容芮应助fly the bike采纳,获得50
21秒前
阿黎发布了新的文献求助10
23秒前
23秒前
25秒前
可爱的函函应助kuzzi采纳,获得10
25秒前
刘BOSHI完成签到,获得积分20
25秒前
单薄水壶关注了科研通微信公众号
26秒前
赶路人发布了新的文献求助10
28秒前
28秒前
Lynn完成签到,获得积分10
28秒前
huy发布了新的文献求助10
29秒前
29秒前
刘BOSHI发布了新的文献求助10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133522
求助须知:如何正确求助?哪些是违规求助? 2784556
关于积分的说明 7767520
捐赠科研通 2439740
什么是DOI,文献DOI怎么找? 1297013
科研通“疑难数据库(出版商)”最低求助积分说明 624827
版权声明 600791