Self-Supervised Monocular Depth Estimation With Frequency-Based Recurrent Refinement

计算机科学 人工智能 加权 单眼 特征(语言学) 频域 过程(计算) 模式识别(心理学) 空间频率 图像(数学) 监督学习 计算机视觉 人工神经网络 操作系统 光学 物理 放射科 哲学 医学 语言学
作者
Rui Li,Danna Xue,Yu Zhu,Hao Wu,Jinqiu Sun,Yanning Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5626-5637 被引量:11
标识
DOI:10.1109/tmm.2022.3197367
摘要

Self-supervised monocular depth estimation has succeeded in learning scene geometry from only image pairs or sequences. However, it is still highly ill-posed for self-supervised depth estimation to generate high-quality depth maps with both global high accuracy and local fine details. To address this issue, we propose a novel frequency-based recurrent refinement scheme to improve the self-supervised depth estimation. Since the global and local depth representation can be correlated to high/low frequency coefficients in the frequency domain, we propose a frequency-based recurrent depth coefficient refinement (RDCR) scheme, which progressively refines both low frequency and high frequency depth coefficients with an RNN-based architecture in a multi-level manner. During the recurrent process, the depth coefficients generated from the previous time step are used as the input to generate the current depth coefficients, yielding progressively optimized depth estimations. Meanwhile, considering that the depth details often appear in areas with high image frequency, we further improve depth details during the RDCR process by leveraging the image-based high frequency components. Specifically, in each RDCR module, we enhance the high frequency depth representations by selecting and feeding the informative image-based high frequency features with a learned feature weighting mask. Extensive experiments show that the proposed method achieves globally accurate estimation with fine local details, outperforming other self-supervised methods in both quantitative and qualitative comparisons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dew完成签到,获得积分10
刚刚
坦呐发布了新的文献求助10
1秒前
星辰大海应助wsd采纳,获得10
4秒前
欢呼沅完成签到,获得积分10
4秒前
闾丘道天完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
sswbzh应助xiaoyue采纳,获得80
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
10秒前
chao完成签到,获得积分10
10秒前
11秒前
传奇3应助一一采纳,获得10
12秒前
gxffxf发布了新的文献求助10
12秒前
打打应助杨洋采纳,获得10
13秒前
悲伤香菇酱完成签到,获得积分10
13秒前
111发布了新的文献求助10
13秒前
14秒前
浮游应助着急的凌青采纳,获得10
15秒前
Percy发布了新的文献求助30
15秒前
哈哈哈发布了新的文献求助10
15秒前
叶赛文完成签到,获得积分10
16秒前
SYX完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
20秒前
22秒前
24秒前
lsx发布了新的文献求助10
24秒前
dili发布了新的文献求助20
24秒前
24秒前
Akim应助富贵李采纳,获得10
24秒前
慕青应助bobo采纳,获得10
25秒前
鬼豆完成签到,获得积分10
25秒前
25秒前
老姚发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145