Self-Supervised Monocular Depth Estimation With Frequency-Based Recurrent Refinement

计算机科学 人工智能 加权 单眼 特征(语言学) 频域 过程(计算) 模式识别(心理学) 空间频率 监督学习 计算机视觉 人工神经网络 物理 放射科 光学 哲学 操作系统 医学 语言学
作者
Rui Li,Danna Xue,Yu Zhu,Hao Wu,Jinqiu Sun,Yanning Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5626-5637 被引量:7
标识
DOI:10.1109/tmm.2022.3197367
摘要

Self-supervised monocular depth estimation has succeeded in learning scene geometry from only image pairs or sequences. However, it is still highly ill-posed for self-supervised depth estimation to generate high-quality depth maps with both global high accuracy and local fine details. To address this issue, we propose a novel frequency-based recurrent refinement scheme to improve the self-supervised depth estimation. Since the global and local depth representation can be correlated to high/low frequency coefficients in the frequency domain, we propose a frequency-based recurrent depth coefficient refinement (RDCR) scheme, which progressively refines both low frequency and high frequency depth coefficients with an RNN-based architecture in a multi-level manner. During the recurrent process, the depth coefficients generated from the previous time step are used as the input to generate the current depth coefficients, yielding progressively optimized depth estimations. Meanwhile, considering that the depth details often appear in areas with high image frequency, we further improve depth details during the RDCR process by leveraging the image-based high frequency components. Specifically, in each RDCR module, we enhance the high frequency depth representations by selecting and feeding the informative image-based high frequency features with a learned feature weighting mask. Extensive experiments show that the proposed method achieves globally accurate estimation with fine local details, outperforming other self-supervised methods in both quantitative and qualitative comparisons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张123发布了新的文献求助10
刚刚
冬虫夏草完成签到,获得积分10
刚刚
vide完成签到,获得积分10
1秒前
2秒前
wanci应助快乐人杰采纳,获得10
2秒前
人专完成签到,获得积分10
3秒前
4秒前
4秒前
漂亮幻莲发布了新的文献求助10
4秒前
Cheney发布了新的文献求助10
5秒前
永不言弃的lx完成签到,获得积分10
5秒前
6秒前
neil_match完成签到,获得积分10
6秒前
YA发布了新的文献求助10
7秒前
7秒前
8秒前
田様应助sxk795采纳,获得10
8秒前
10秒前
10秒前
10秒前
11秒前
良辰应助水论文行者采纳,获得10
11秒前
spotless发布了新的文献求助10
12秒前
12秒前
ZEM发布了新的文献求助10
12秒前
椿·完成签到 ,获得积分10
12秒前
eternity136完成签到,获得积分10
12秒前
热心市民小红花应助小鱼采纳,获得20
13秒前
柏仰发布了新的文献求助10
14秒前
wanci应助2032jia采纳,获得10
14秒前
14秒前
佟寄灵完成签到,获得积分10
15秒前
16秒前
阔达代芹发布了新的文献求助10
16秒前
派大星发布了新的文献求助10
17秒前
17秒前
17秒前
TranYan发布了新的文献求助10
17秒前
yiyi发布了新的文献求助30
17秒前
子民应助msc采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297279
求助须知:如何正确求助?哪些是违规求助? 2932744
关于积分的说明 8458881
捐赠科研通 2605477
什么是DOI,文献DOI怎么找? 1422392
科研通“疑难数据库(出版商)”最低求助积分说明 661383
邀请新用户注册赠送积分活动 644677