EGDE-Net: A building change detection method for high-resolution remote sensing imagery based on edge guidance and differential enhancement

计算机科学 特征(语言学) 分割 数据挖掘 判别式 变更检测 人工智能 背景(考古学) 模式识别(心理学) 遥感 地理 语言学 哲学 考古
作者
Zhanlong Chen,Yuan Zhou,Bin Wang,Xuwei Xu,Nan He,Shuai Jin,Shenrui Jin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 203-222 被引量:56
标识
DOI:10.1016/j.isprsjprs.2022.07.016
摘要

Buildings are some of the basic spatial elements of a city. Changes in the spatial distributions of buildings are of great significance for urban planning and monitoring illegal construction. Building change detection (CD) with high-resolution remote sensing images based on deep learning can be used to quickly identify large-scale spatial distribution changes, saving many workforce and material resources. However, existing CD networks mainly focus on regional accuracy, ignoring the importance of accurate boundary identification. It is often difficult for CD networks to achieve accurate boundary segmentation, especially for dense and continuously distributed buildings. In addition, due to the inconsistencies among classes and the discontinuities within classes, it is difficult for CD networks to obtain complete change results. In response to the above problems, a novel method called EGDE-Net that focuses on boundary accuracy and change region integrity is proposed in this paper. First, an edge-guided Transformer block is designed to encode dual-branch networks for EGDE-Net; this block combines a hierarchical Transformer with an edge-aware module (EAM) for long-range context modeling and feature refinement. Second, a feature differential enhancement module (FDEM) is developed to learn highly discriminative change feature maps by exploiting the differences between bitemporal features. In addition, feature maps are recovered through multiple upsampling operations and dilated asymmetric modules (DAMs) in the decoding part of the network. Finally, prior information for boundaries and change information are jointly used to implement a supervision process and obtain the optimal model. The proposed EGDE-Net achieves better results based on the WHU building CD dataset and LEVIR-CD dataset than do similar methods. Notably, F1 scores of 93.02% and 90.05% and intersection over union (IoU) scores of 86.96% and 81.91% are obtained for these two datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助大佛采纳,获得10
1秒前
1秒前
1秒前
梁嘉琪发布了新的文献求助10
1秒前
高皮皮发布了新的文献求助10
1秒前
randi完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
香蕉觅云应助wjw采纳,获得10
2秒前
qiqi发布了新的文献求助10
2秒前
满月寂照完成签到,获得积分10
2秒前
ycjdoc发布了新的文献求助10
3秒前
3秒前
4秒前
李nb完成签到,获得积分10
4秒前
善学以致用应助Ainhoa采纳,获得10
4秒前
香蕉觅云应助娇气的幼南采纳,获得10
4秒前
杨沛发布了新的文献求助10
4秒前
SciGPT应助查查采纳,获得10
4秒前
独特的不尤完成签到,获得积分10
4秒前
qoq完成签到 ,获得积分10
5秒前
5秒前
上官若男应助臭臭臭臭臭采纳,获得10
5秒前
5秒前
在水一方应助木南采纳,获得10
5秒前
randi发布了新的文献求助10
5秒前
Charety完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
yhh发布了新的文献求助10
6秒前
萌酱发布了新的文献求助10
6秒前
丘比特应助木又采纳,获得10
7秒前
7秒前
Owen应助痴情烤鱼采纳,获得10
8秒前
刀剑发布了新的文献求助10
8秒前
8秒前
清溪浅水XZ完成签到,获得积分10
8秒前
漂亮镜子发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4989279
求助须知:如何正确求助?哪些是违规求助? 4238634
关于积分的说明 13203306
捐赠科研通 4032607
什么是DOI,文献DOI怎么找? 2206278
邀请新用户注册赠送积分活动 1217556
关于科研通互助平台的介绍 1135744