已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EGDE-Net: A building change detection method for high-resolution remote sensing imagery based on edge guidance and differential enhancement

计算机科学 特征(语言学) 分割 数据挖掘 判别式 变更检测 人工智能 背景(考古学) 模式识别(心理学) 遥感 地理 语言学 哲学 考古
作者
Zhanlong Chen,Yuan Zhou,Bin Wang,Xuwei Xu,Nan He,Shuai Jin,Shenrui Jin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 203-222 被引量:56
标识
DOI:10.1016/j.isprsjprs.2022.07.016
摘要

Buildings are some of the basic spatial elements of a city. Changes in the spatial distributions of buildings are of great significance for urban planning and monitoring illegal construction. Building change detection (CD) with high-resolution remote sensing images based on deep learning can be used to quickly identify large-scale spatial distribution changes, saving many workforce and material resources. However, existing CD networks mainly focus on regional accuracy, ignoring the importance of accurate boundary identification. It is often difficult for CD networks to achieve accurate boundary segmentation, especially for dense and continuously distributed buildings. In addition, due to the inconsistencies among classes and the discontinuities within classes, it is difficult for CD networks to obtain complete change results. In response to the above problems, a novel method called EGDE-Net that focuses on boundary accuracy and change region integrity is proposed in this paper. First, an edge-guided Transformer block is designed to encode dual-branch networks for EGDE-Net; this block combines a hierarchical Transformer with an edge-aware module (EAM) for long-range context modeling and feature refinement. Second, a feature differential enhancement module (FDEM) is developed to learn highly discriminative change feature maps by exploiting the differences between bitemporal features. In addition, feature maps are recovered through multiple upsampling operations and dilated asymmetric modules (DAMs) in the decoding part of the network. Finally, prior information for boundaries and change information are jointly used to implement a supervision process and obtain the optimal model. The proposed EGDE-Net achieves better results based on the WHU building CD dataset and LEVIR-CD dataset than do similar methods. Notably, F1 scores of 93.02% and 90.05% and intersection over union (IoU) scores of 86.96% and 81.91% are obtained for these two datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊力扎提完成签到,获得积分10
1秒前
伊力扎提发布了新的文献求助10
4秒前
洁净的千凡完成签到 ,获得积分20
4秒前
小二郎应助lili采纳,获得10
5秒前
任无施发布了新的文献求助10
5秒前
7秒前
梦梦关注了科研通微信公众号
10秒前
小橘子吃傻子完成签到,获得积分10
11秒前
斯文败类应助liwen采纳,获得10
13秒前
14秒前
6666应助佛光辉采纳,获得10
14秒前
李健的小迷弟应助任无施采纳,获得10
16秒前
16秒前
桐桐应助海大彭于晏采纳,获得10
17秒前
少年锦时完成签到,获得积分10
17秒前
白泽发布了新的文献求助10
20秒前
20秒前
lili发布了新的文献求助10
21秒前
21秒前
EternalStrider完成签到,获得积分10
23秒前
梦梦发布了新的文献求助10
24秒前
cmf完成签到 ,获得积分10
28秒前
29秒前
Criminology34应助伊力扎提采纳,获得10
29秒前
31秒前
xiaoguoxiaoguo完成签到,获得积分10
33秒前
科研通AI6应助inRe采纳,获得30
33秒前
lululemontree发布了新的文献求助10
33秒前
35秒前
英姑应助开放的千青采纳,获得10
35秒前
白泽完成签到,获得积分10
40秒前
cenghao给cenghao的求助进行了留言
41秒前
42秒前
lili完成签到,获得积分10
44秒前
46秒前
qing_li完成签到,获得积分10
47秒前
47秒前
miaomiao123完成签到 ,获得积分10
48秒前
liwen发布了新的文献求助10
49秒前
勤劳凌青发布了新的文献求助20
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910