EGDE-Net: A building change detection method for high-resolution remote sensing imagery based on edge guidance and differential enhancement

计算机科学 特征(语言学) 分割 数据挖掘 判别式 变更检测 人工智能 背景(考古学) 模式识别(心理学) 遥感 地理 语言学 哲学 考古
作者
Zhanlong Chen,Yuan Zhou,Bin Wang,Xuwei Xu,Nan He,Shuai Jin,Shenrui Jin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 203-222 被引量:56
标识
DOI:10.1016/j.isprsjprs.2022.07.016
摘要

Buildings are some of the basic spatial elements of a city. Changes in the spatial distributions of buildings are of great significance for urban planning and monitoring illegal construction. Building change detection (CD) with high-resolution remote sensing images based on deep learning can be used to quickly identify large-scale spatial distribution changes, saving many workforce and material resources. However, existing CD networks mainly focus on regional accuracy, ignoring the importance of accurate boundary identification. It is often difficult for CD networks to achieve accurate boundary segmentation, especially for dense and continuously distributed buildings. In addition, due to the inconsistencies among classes and the discontinuities within classes, it is difficult for CD networks to obtain complete change results. In response to the above problems, a novel method called EGDE-Net that focuses on boundary accuracy and change region integrity is proposed in this paper. First, an edge-guided Transformer block is designed to encode dual-branch networks for EGDE-Net; this block combines a hierarchical Transformer with an edge-aware module (EAM) for long-range context modeling and feature refinement. Second, a feature differential enhancement module (FDEM) is developed to learn highly discriminative change feature maps by exploiting the differences between bitemporal features. In addition, feature maps are recovered through multiple upsampling operations and dilated asymmetric modules (DAMs) in the decoding part of the network. Finally, prior information for boundaries and change information are jointly used to implement a supervision process and obtain the optimal model. The proposed EGDE-Net achieves better results based on the WHU building CD dataset and LEVIR-CD dataset than do similar methods. Notably, F1 scores of 93.02% and 90.05% and intersection over union (IoU) scores of 86.96% and 81.91% are obtained for these two datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙燕应助sc30采纳,获得20
刚刚
刚刚
1秒前
荔枝发布了新的文献求助10
1秒前
1秒前
1秒前
Ki_Ayasato发布了新的文献求助10
1秒前
zzzz完成签到,获得积分20
4秒前
4秒前
4秒前
jike发布了新的文献求助10
6秒前
裴帅龙发布了新的文献求助10
6秒前
今后应助karna采纳,获得10
7秒前
7秒前
kk完成签到,获得积分10
7秒前
Lucas应助hufan2441采纳,获得30
8秒前
聂白晴完成签到,获得积分20
8秒前
9秒前
荔枝完成签到,获得积分10
9秒前
10秒前
....完成签到 ,获得积分10
10秒前
Akim应助slj采纳,获得10
11秒前
裴帅龙完成签到,获得积分20
11秒前
领导范儿应助泥嚎采纳,获得10
11秒前
张雯思发布了新的文献求助10
12秒前
7iy关注了科研通微信公众号
12秒前
深情安青应助zzzz采纳,获得20
14秒前
可爱的函函应助平淡汽车采纳,获得10
15秒前
聂白晴发布了新的文献求助30
15秒前
充电宝应助裴帅龙采纳,获得30
16秒前
YOLO完成签到,获得积分10
16秒前
16秒前
18秒前
赘婿应助干净又晴采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
19秒前
情怀应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176