EGDE-Net: A building change detection method for high-resolution remote sensing imagery based on edge guidance and differential enhancement

计算机科学 特征(语言学) 分割 数据挖掘 判别式 变更检测 人工智能 背景(考古学) 模式识别(心理学) 遥感 地理 语言学 哲学 考古
作者
Zhanlong Chen,Yuan Zhou,Bin Wang,Xuwei Xu,Nan He,Jin Su,Shenrui Jin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 203-222 被引量:26
标识
DOI:10.1016/j.isprsjprs.2022.07.016
摘要

Buildings are some of the basic spatial elements of a city. Changes in the spatial distributions of buildings are of great significance for urban planning and monitoring illegal construction. Building change detection (CD) with high-resolution remote sensing images based on deep learning can be used to quickly identify large-scale spatial distribution changes, saving many workforce and material resources. However, existing CD networks mainly focus on regional accuracy, ignoring the importance of accurate boundary identification. It is often difficult for CD networks to achieve accurate boundary segmentation, especially for dense and continuously distributed buildings. In addition, due to the inconsistencies among classes and the discontinuities within classes, it is difficult for CD networks to obtain complete change results. In response to the above problems, a novel method called EGDE-Net that focuses on boundary accuracy and change region integrity is proposed in this paper. First, an edge-guided Transformer block is designed to encode dual-branch networks for EGDE-Net; this block combines a hierarchical Transformer with an edge-aware module (EAM) for long-range context modeling and feature refinement. Second, a feature differential enhancement module (FDEM) is developed to learn highly discriminative change feature maps by exploiting the differences between bitemporal features. In addition, feature maps are recovered through multiple upsampling operations and dilated asymmetric modules (DAMs) in the decoding part of the network. Finally, prior information for boundaries and change information are jointly used to implement a supervision process and obtain the optimal model. The proposed EGDE-Net achieves better results based on the WHU building CD dataset and LEVIR-CD dataset than do similar methods. Notably, F1 scores of 93.02% and 90.05% and intersection over union (IoU) scores of 86.96% and 81.91% are obtained for these two datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿尼完成签到 ,获得积分10
2秒前
3秒前
溜了溜了完成签到,获得积分10
7秒前
guozizi完成签到,获得积分10
10秒前
jixuchance完成签到,获得积分10
10秒前
叽叽哒哒完成签到 ,获得积分10
11秒前
Suraim完成签到,获得积分10
12秒前
yy家的小哥哥完成签到,获得积分10
13秒前
尽平梅愿完成签到,获得积分10
14秒前
乐乐乐乐乐乐完成签到,获得积分10
14秒前
南城花开完成签到,获得积分10
15秒前
孤海未蓝完成签到,获得积分10
17秒前
feimengxia完成签到 ,获得积分10
17秒前
17秒前
fuguier发布了新的文献求助10
18秒前
20秒前
mmlb发布了新的文献求助10
20秒前
21秒前
21秒前
wxnice完成签到,获得积分10
22秒前
26秒前
慕青应助简单的卿采纳,获得10
26秒前
研友_8y2G0L发布了新的文献求助10
27秒前
A宇发布了新的文献求助10
27秒前
keyanxiaobai完成签到,获得积分10
28秒前
河鲸完成签到 ,获得积分10
28秒前
GT完成签到,获得积分10
30秒前
小吴今天不上班完成签到 ,获得积分10
30秒前
谨慎招牌完成签到,获得积分10
30秒前
whz完成签到,获得积分10
30秒前
花生了什么树完成签到 ,获得积分10
32秒前
LYZSh发布了新的文献求助10
32秒前
33秒前
一只狗东西完成签到 ,获得积分10
34秒前
连难胜完成签到 ,获得积分10
36秒前
mzp完成签到,获得积分10
37秒前
cst完成签到,获得积分10
37秒前
38秒前
xiuxiuzhang完成签到 ,获得积分10
39秒前
零立方完成签到 ,获得积分10
39秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339197
求助须知:如何正确求助?哪些是违规求助? 2967064
关于积分的说明 8628183
捐赠科研通 2646548
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180