Silk fibroin production in Escherichia coli is limited by a positive feedback loop between metabolic burden and toxicity stress

丝素 丝绸 大肠杆菌 代谢工程 生物化学 拉伤 焊剂(冶金) 氨基酸 生物 化学 材料科学 基因 解剖 复合材料 有机化学
作者
Zhengyang Xiao,Alexander Connor,Alyssa M. Worland,Yinjie Tang,R. Helen Zha,Mattheos A. G. Koffas
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:77: 231-241 被引量:7
标识
DOI:10.1016/j.ymben.2023.03.011
摘要

To investigate the metabolic elasticity and production bottlenecks for recombinant silk proteins in Escherichia coli, we performed a comprehensive characterization of one elastin-like peptide strain (ELP) and two silk protein strains (A5 4mer, A5 16mer). Our approach included 13C metabolic flux analysis, genome-scale modeling, transcription analysis, and 13C-assisted media optimization experiments. Three engineered strains maintained their central flux network during growth, while measurable metabolic flux redistributions (such as the Entner–Doudoroff pathway) were detected. Under metabolic burdens, the reduced TCA fluxes forced the engineered strain to rely more on substrate-level phosphorylation for ATP production, which increased acetate overflow. Acetate (as low as 10 mM) in the media was highly toxic to silk-producing strains, which reduced 4mer production by 43% and 16mer by 84%, respectively. Due to the high toxicity of large-size silk proteins, 16mer′s productivity was limited, particularly in the minimal medium. Therefore, metabolic burden, overflow acetate, and toxicity of silk proteins may form a vicious positive feedback loop that fractures the metabolic network. Three solutions could be applied: 1) addition of building block supplements (i.e., eight key amino acids: His, Ile, Phe, Pro, Tyr, Lys, Met, Glu) to reduce metabolic burden; 2) disengagement of growth and production; and 3) use of non-glucose based substrate to reduce acetate overflow. Other reported strategies were also discussed in light of decoupling this positive feedback loop.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的傲玉应助经法采纳,获得10
1秒前
上官若男应助经法采纳,获得10
1秒前
buno应助经法采纳,获得10
1秒前
1111应助经法采纳,获得10
1秒前
Lucas应助经法采纳,获得10
1秒前
Jasper应助经法采纳,获得10
1秒前
1秒前
习习应助经法采纳,获得10
1秒前
小鱼骑单车应助经法采纳,获得10
1秒前
辰柒发布了新的文献求助10
2秒前
英俊的铭应助经法采纳,获得10
2秒前
wgl发布了新的文献求助10
2秒前
领导范儿应助氨基酸采纳,获得30
2秒前
2秒前
科研通AI2S应助zink采纳,获得10
3秒前
科目三应助Jimmy采纳,获得10
3秒前
3秒前
3秒前
芋圆Z.发布了新的文献求助10
4秒前
4秒前
东皇太憨完成签到,获得积分10
4秒前
4秒前
5秒前
润润轩轩发布了新的文献求助10
5秒前
5秒前
orixero应助韭黄采纳,获得10
6秒前
gnufgg完成签到,获得积分10
6秒前
科研通AI5应助tabor采纳,获得10
6秒前
6秒前
互助互惠互通完成签到,获得积分10
6秒前
脑洞疼应助ziyiziyi采纳,获得10
7秒前
7秒前
7秒前
屹舟完成签到,获得积分10
8秒前
zjudxn关注了科研通微信公众号
8秒前
9秒前
9秒前
科研通AI5应助hu970采纳,获得10
9秒前
9秒前
艺玲发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759