Light nurtures plants: The picosecond laser-induced lithops-like microstructures on titanium alloy surface with broad-band ultra-low reflectivity

材料科学 微观结构 纳米结构 激光器 光电子学 紫外线 纳米颗粒 纳米技术 光学 复合材料 冶金 物理
作者
Jun Xu,Guojun Zhang,Lu Wang,Congyi Wu,Yu Huang,Youmin Rong
出处
期刊:Applied Surface Science [Elsevier]
卷期号:625: 157199-157199 被引量:4
标识
DOI:10.1016/j.apsusc.2023.157199
摘要

Micro-nanostructures on metal surfaces have received significant attention due to their widespread applications. Although ultrafast laser processing was a feasible method to fabricate micro-nanostructures, some issues involving the formation and application of novel micro-nanostructures still exist. Here, we proposed the unique lithops-like microstructures on titanium alloy (Ti-6Al-4V) by ultraviolet picosecond (UV-ps) laser treatment. These structures were either separate tomb-like bumps or bump clusters consisting of several interconnected bumps, which were similar in appearance to lithops. Due to nanoparticle deposition, these bumps were also covered with nanostructures. Titanium alloy was oxidized to form Ti2O3 and TiO2 during treatment. The formation of lithops-like microstructures involved the laser-induced physical/chemical processes of melting, flowing, vaporization, oxidation, solidification, and deposition of material. As laser energy increased, the smooth surface gradually evolved into lithops-like microstructures under the synergistic effects of electromagnetic interference, the Marangoni effect, preferential valley ablation, and thermal effects. By combining geometric light trapping within microstructures with surface plasmon resonance (SPR) absorption within nanostructures, these structures exhibited ultra-low reflectivity (0.02%∼2.31%) in the ultraviolet–visible-near-infrared band (200 ∼ 2500 nm). They also showed ultra-low reflectance (<3%) over a wide range of incidence angles (5°∼70°). The anti-reflection properties of lithops-like microstructures were superior to those of some typical micro-nanostructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助Hu采纳,获得10
1秒前
1秒前
小欧医生完成签到,获得积分10
1秒前
2秒前
2秒前
老肥完成签到,获得积分10
3秒前
易安发布了新的文献求助10
3秒前
洋洋洋完成签到,获得积分10
3秒前
3秒前
冷傲迎梦发布了新的文献求助10
4秒前
4秒前
Agernon应助晓军采纳,获得10
4秒前
小夭发布了新的文献求助10
5秒前
无聊的翠芙完成签到,获得积分10
5秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
wjj发布了新的文献求助10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
彭于晏应助鱼与树采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
Orange应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
xiuxiu_27发布了新的文献求助10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
猪猪hero发布了新的文献求助10
7秒前
7秒前
思源应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得30
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
剑兰先生应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678