Predicting Thermoelectric Power Factor of Bismuth Telluride During Laser Powder Bed Fusion Additive Manufacturing

碲化铋 材料科学 热电效应 激光功率缩放 热电材料 机器学习 人工智能 热电发电机 计算机科学 算法 工艺工程 激光器 工程类 复合材料 热导率 光学 物理 热力学
作者
Ankita Agarwal,Tanvi Banerjee,Joy Gockel,Saniya LeBlanc,Mitchell L. R. Walker,J. R. Middendorf
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2303.15663
摘要

An additive manufacturing (AM) process, like laser powder bed fusion, allows for the fabrication of objects by spreading and melting powder in layers until a freeform part shape is created. In order to improve the properties of the material involved in the AM process, it is important to predict the material characterization property as a function of the processing conditions. In thermoelectric materials, the power factor is a measure of how efficiently the material can convert heat to electricity. While earlier works have predicted the material characterization properties of different thermoelectric materials using various techniques, implementation of machine learning models to predict the power factor of bismuth telluride (Bi2Te3) during the AM process has not been explored. This is important as Bi2Te3 is a standard material for low temperature applications. Thus, we used data about manufacturing processing parameters involved and in-situ sensor monitoring data collected during AM of Bi2Te3, to train different machine learning models in order to predict its thermoelectric power factor. We implemented supervised machine learning techniques using 80% training and 20% test data and further used the permutation feature importance method to identify important processing parameters and in-situ sensor features which were best at predicting power factor of the material. Ensemble-based methods like random forest, AdaBoost classifier, and bagging classifier performed the best in predicting power factor with the highest accuracy of 90% achieved by the bagging classifier model. Additionally, we found the top 15 processing parameters and in-situ sensor features to characterize the material manufacturing property like power factor. These features could further be optimized to maximize power factor of the thermoelectric material and improve the quality of the products built using this material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
着急的语海完成签到,获得积分10
刚刚
1秒前
对科研祛魅的small完成签到,获得积分10
3秒前
在水一方应助HOLLOW采纳,获得10
6秒前
6秒前
6秒前
cadcae发布了新的文献求助30
7秒前
小舒完成签到 ,获得积分10
7秒前
Abi完成签到,获得积分10
8秒前
机灵的千琴完成签到,获得积分10
10秒前
李嘉图的栗子完成签到,获得积分10
10秒前
闪闪的从彤完成签到 ,获得积分0
12秒前
武科大完成签到,获得积分10
13秒前
Ida完成签到 ,获得积分10
13秒前
zhuding1978完成签到,获得积分10
13秒前
HOLLOW完成签到,获得积分10
13秒前
幽默的乘风完成签到,获得积分0
13秒前
华仔应助海绵宝宝采纳,获得10
14秒前
15秒前
光脚丫完成签到,获得积分10
15秒前
genomed给苹果小蜜蜂的求助进行了留言
16秒前
听说发布了新的文献求助10
17秒前
爆米花应助iwsaml采纳,获得10
18秒前
23秒前
听说完成签到,获得积分10
25秒前
高山七石完成签到,获得积分10
26秒前
俏皮的老城完成签到 ,获得积分10
26秒前
27秒前
27秒前
28秒前
yuanjun完成签到,获得积分10
30秒前
30秒前
Junny发布了新的文献求助10
30秒前
疯狂的绮山完成签到,获得积分10
30秒前
31秒前
深情安青应助植物病理采纳,获得10
31秒前
diraczh应助背后的华采纳,获得30
32秒前
飘逸的青雪完成签到,获得积分10
32秒前
夏虫完成签到,获得积分10
32秒前
琴生完成签到 ,获得积分10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3317140
求助须知:如何正确求助?哪些是违规求助? 2948830
关于积分的说明 8542911
捐赠科研通 2624969
什么是DOI,文献DOI怎么找? 1436439
科研通“疑难数据库(出版商)”最低求助积分说明 665906
邀请新用户注册赠送积分活动 651841