Predicting Thermoelectric Power Factor of Bismuth Telluride During Laser Powder Bed Fusion Additive Manufacturing

碲化铋 材料科学 热电效应 激光功率缩放 热电材料 机器学习 人工智能 热电发电机 计算机科学 算法 工艺工程 激光器 工程类 复合材料 热导率 光学 物理 热力学
作者
Ankita Agarwal,Tanvi Banerjee,Joy Gockel,Saniya LeBlanc,Mitchell L. R. Walker,J. R. Middendorf
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2303.15663
摘要

An additive manufacturing (AM) process, like laser powder bed fusion, allows for the fabrication of objects by spreading and melting powder in layers until a freeform part shape is created. In order to improve the properties of the material involved in the AM process, it is important to predict the material characterization property as a function of the processing conditions. In thermoelectric materials, the power factor is a measure of how efficiently the material can convert heat to electricity. While earlier works have predicted the material characterization properties of different thermoelectric materials using various techniques, implementation of machine learning models to predict the power factor of bismuth telluride (Bi2Te3) during the AM process has not been explored. This is important as Bi2Te3 is a standard material for low temperature applications. Thus, we used data about manufacturing processing parameters involved and in-situ sensor monitoring data collected during AM of Bi2Te3, to train different machine learning models in order to predict its thermoelectric power factor. We implemented supervised machine learning techniques using 80% training and 20% test data and further used the permutation feature importance method to identify important processing parameters and in-situ sensor features which were best at predicting power factor of the material. Ensemble-based methods like random forest, AdaBoost classifier, and bagging classifier performed the best in predicting power factor with the highest accuracy of 90% achieved by the bagging classifier model. Additionally, we found the top 15 processing parameters and in-situ sensor features to characterize the material manufacturing property like power factor. These features could further be optimized to maximize power factor of the thermoelectric material and improve the quality of the products built using this material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
www发布了新的文献求助10
刚刚
1秒前
1秒前
李繁蕊发布了新的文献求助10
2秒前
暴躁的嘉懿完成签到,获得积分10
2秒前
LZH发布了新的文献求助20
2秒前
领导范儿应助rosexu采纳,获得10
3秒前
华生完成签到,获得积分10
4秒前
4秒前
Miracle关注了科研通微信公众号
4秒前
通~发布了新的文献求助10
5秒前
5秒前
Apple完成签到,获得积分10
5秒前
sunzhiyu233发布了新的文献求助10
6秒前
医学僧发布了新的文献求助30
6秒前
Sheila完成签到 ,获得积分10
6秒前
sweetbearm应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
NN应助科研通管家采纳,获得10
6秒前
7秒前
英姑应助科研通管家采纳,获得10
7秒前
36456657应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
prosperp应助科研通管家采纳,获得20
7秒前
打打应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
执着夏岚完成签到 ,获得积分10
8秒前
CipherSage应助苏州小北采纳,获得10
8秒前
www完成签到,获得积分20
9秒前
汉关发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808