化学
卡宾
催化作用
过渡金属
位阻效应
锇
铑
反应性(心理学)
钌
反离子
有机化学
组合化学
离子
医学
替代医学
病理
作者
Pengcheng Gao,Michal Szostak
标识
DOI:10.1016/j.ccr.2023.215110
摘要
The catalytic addition of water to unsaturated C-C or C-N π bonds represent one of the most important and environmentally sustainable methods to form C-O bonds for the production of synthetic intermediates, medicinal agents and natural products. The traditional acid-catalyzed hydration of unsaturated compounds typically requires strong acids or toxic mercury salts, which limits practical applications and presents safety and environmental concerns. Today, transition-metal-catalyzed hydration supported by NHC (NHC = N-heterocyclic carbene) ligands has attracted major attention. By rational design of ligands, choice of metals and counterions as well as mechanistic studies and the development of heterogeneous systems, major progress has been achieved for a broad range of hydration processes. In particular, the combination of NHC ligands with gold shows excellent reactivity compared with other catalytic systems; however, other systems based on silver, ruthenium, osmium, platinum, rhodium and nickel have also been discovered. Ancillary NHC ligands provide stabilization of transition metals and ensure high catalytic activity in hydration owing to their unique electronic and steric properties. NHC-Au(I) complexes are particularly favored for hydration of unsaturated hydrocarbons due to soft and carbophilic properties of gold. In this review, we present a comprehensive overview of hydration reactions catalyzed by transition metal-NHC complexes and their applications in catalytic hydration of different classes of π-substrates with a focus on the role of NHC ligands, types of metals and counterions.
科研通智能强力驱动
Strongly Powered by AbleSci AI