Terahertz Metasurface Modulators Based on Photosensitive Silicon

太赫兹辐射 材料科学 光电子学 调幅 超短脉冲 调制(音乐) 半导体 相位调制 光学 振幅 相(物质) 频率调制 物理 带宽(计算) 电信 相位噪声 量子力学 激光器 计算机科学 声学
作者
Qiangguo Zhou,Yongzhen Li,Tuntan Wu,Qinxi Qiu,Jiaxin Duan,Lin Jiang,Wangchen Mao,Niangjuan Yao,Zhiming Huang
出处
期刊:Laser & Photonics Reviews [Wiley]
卷期号:17 (6) 被引量:35
标识
DOI:10.1002/lpor.202200808
摘要

Abstract Metasurfaces solve the lack of materials in the terahertz (THz) band and control precisely the amplitude, phase, polarization, and transmission characteristics of THz waves, providing an effective way to realize THz functional devices. This article focuses on the design of THz metasurface modulators with a unit structure consisting of metal square rings, including resonance frequency, phase, and amplitude modulators. By embedding photosensitive semiconductor silicon (Si) in the unit structure, the unit structure is built from meta‐atom to molecularization model under the optical pumping condition, and the resonance frequencies are switched between high and low frequencies. The resonance frequency switchable characteristic is demonstrated using the equivalent LC oscillation circuit model, and the theoretical calculation results agree well with the simulations. Through theoretical calculations, the modulators achieve ultrafast switching times of less than 0.141 ps by the optical pumps, which have significant advantages in ultrafast THz modulators. By continuing to change the embedded position of the silicon in the unit structure, not only is a wide range of THz phase modulation achieved, but also multilevel modulation of the phase is realized. It is found that there is a strong relationship between the modulation depth and phase variation of THz waves, and a reasonable analysis is given. Further the amplitude modulator with a larger modulation depth (MD) is developed, and when the conductivity of photosensitive semiconductor silicon (σ Si ) reaches 2.5 × 10 6 S m −1 , return loss (RL) is ≈0 dB, and the maximum MD reaches ≈100%; in order to gain insight into the nature of modulation, the modulation mechanism of THz waves under optical pumping conditions is analyzed. In addition, graphene‐based THz metasurface amplitude modulators are designed. When the depth of amplitude modulation is achieved by bias voltage modulation of the Fermi energy level of graphene, the maximum modulation amplitude is 23.42 dB, with a minimal modulation accuracy of 0.05 THz eV −1 . In the article, the designed modulators have extremely excellent modulation performance. It has great potential applications in silicon‐based THz photonic devices, ultrahigh frequency electronic devices, high sensitivity sensors, and high‐precision imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
专注的惜萱完成签到,获得积分10
1秒前
lzw123456完成签到,获得积分10
1秒前
echo完成签到 ,获得积分10
1秒前
2秒前
科研通AI5应助hzh采纳,获得10
3秒前
ccm应助罗英采纳,获得10
3秒前
4秒前
浮游应助TT采纳,获得10
4秒前
Chaimengdi发布了新的文献求助10
5秒前
汉堡包应助江大橘采纳,获得10
6秒前
6秒前
bwx发布了新的文献求助200
6秒前
青青发布了新的文献求助30
7秒前
RogerCHEN发布了新的文献求助100
7秒前
乌龟君完成签到,获得积分10
7秒前
7秒前
8秒前
zbj完成签到 ,获得积分10
8秒前
青年才俊发布了新的文献求助10
8秒前
8秒前
Oil完成签到,获得积分10
8秒前
9秒前
一颗小纽扣完成签到,获得积分10
10秒前
斯文败类应助李李李采纳,获得10
10秒前
科研小白发布了新的文献求助10
10秒前
脑洞疼应助荔枝采纳,获得10
10秒前
芋泥芝士发布了新的文献求助10
11秒前
科研王完成签到 ,获得积分10
11秒前
斯文败类应助胡慧婷采纳,获得10
12秒前
12秒前
Chaimengdi完成签到,获得积分10
12秒前
刘璐发布了新的文献求助10
13秒前
kermitds发布了新的文献求助20
13秒前
hzh发布了新的文献求助10
15秒前
爆米花应助微笑笑萍采纳,获得30
15秒前
鲤鱼诗桃发布了新的文献求助10
15秒前
万能图书馆应助yytt采纳,获得10
16秒前
刘骁萱完成签到 ,获得积分10
17秒前
曾无忧完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097035
求助须知:如何正确求助?哪些是违规求助? 4309550
关于积分的说明 13427646
捐赠科研通 4136934
什么是DOI,文献DOI怎么找? 2266413
邀请新用户注册赠送积分活动 1269483
关于科研通互助平台的介绍 1205787