亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aberration-robust monocular passive depth sensing using a meta-imaging camera

人工智能 计算机科学 计算机视觉 单眼 稳健性(进化) 图像传感器 景深 立体成像 视野 图像分辨率 光学 物理 生物化学 化学 基因
作者
Zhexuan Cao,Ning Li,Zhu Lili,Jiamin Wu,Qionghai Dai,Hui Qiao
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1038/s41377-024-01609-9
摘要

Abstract Depth sensing plays a crucial role in various applications, including robotics, augmented reality, and autonomous driving. Monocular passive depth sensing techniques have come into their own for the cost-effectiveness and compact design, offering an alternative to the expensive and bulky active depth sensors and stereo vision systems. While the light-field camera can address the defocus ambiguity inherent in 2D cameras and achieve unambiguous depth perception, it compromises the spatial resolution and usually struggles with the effect of optical aberration. In contrast, our previously proposed meta-imaging sensor 1 has overcome such hurdles by reconciling the spatial-angular resolution trade-off and achieving the multi-site aberration correction for high-resolution imaging. Here, we present a compact meta-imaging camera and an analytical framework for the quantification of monocular depth sensing precision by calculating the Cramér–Rao lower bound of depth estimation. Quantitative evaluations reveal that the meta-imaging camera exhibits not only higher precision over a broader depth range than the light-field camera but also superior robustness against changes in signal-background ratio. Moreover, both the simulation and experimental results demonstrate that the meta-imaging camera maintains the capability of providing precise depth information even in the presence of aberrations. Showing the promising compatibility with other point-spread-function engineering methods, we anticipate that the meta-imaging camera may facilitate the advancement of monocular passive depth sensing in various applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
Imran完成签到,获得积分10
17秒前
爱思考的小笨笨完成签到,获得积分10
22秒前
梅子黄时雨完成签到,获得积分10
48秒前
52秒前
量子星尘发布了新的文献求助10
57秒前
1分钟前
1分钟前
科研通AI6.1应助993494543采纳,获得10
1分钟前
1分钟前
优美的莹芝完成签到,获得积分10
1分钟前
科研通AI2S应助信陵君无忌采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
古古怪界丶黑大帅完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
993494543发布了新的文献求助10
4分钟前
993494543完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
爆米花应助科研通管家采纳,获得30
4分钟前
4分钟前
4分钟前
eeevaxxx完成签到 ,获得积分10
4分钟前
852应助安青兰采纳,获得10
5分钟前
5分钟前
5分钟前
安青兰发布了新的文献求助10
5分钟前
5分钟前
Feng完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764374
求助须知:如何正确求助?哪些是违规求助? 5551219
关于积分的说明 15406175
捐赠科研通 4899585
什么是DOI,文献DOI怎么找? 2635809
邀请新用户注册赠送积分活动 1583978
关于科研通互助平台的介绍 1539134