Aberration-robust monocular passive depth sensing using a meta-imaging camera

人工智能 计算机科学 计算机视觉 单眼 稳健性(进化) 图像传感器 景深 立体成像 视野 图像分辨率 光学 物理 生物化学 化学 基因
作者
Zhexuan Cao,Ning Li,Zhu Lili,Jiamin Wu,Qionghai Dai,Hui Qiao
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1038/s41377-024-01609-9
摘要

Abstract Depth sensing plays a crucial role in various applications, including robotics, augmented reality, and autonomous driving. Monocular passive depth sensing techniques have come into their own for the cost-effectiveness and compact design, offering an alternative to the expensive and bulky active depth sensors and stereo vision systems. While the light-field camera can address the defocus ambiguity inherent in 2D cameras and achieve unambiguous depth perception, it compromises the spatial resolution and usually struggles with the effect of optical aberration. In contrast, our previously proposed meta-imaging sensor 1 has overcome such hurdles by reconciling the spatial-angular resolution trade-off and achieving the multi-site aberration correction for high-resolution imaging. Here, we present a compact meta-imaging camera and an analytical framework for the quantification of monocular depth sensing precision by calculating the Cramér–Rao lower bound of depth estimation. Quantitative evaluations reveal that the meta-imaging camera exhibits not only higher precision over a broader depth range than the light-field camera but also superior robustness against changes in signal-background ratio. Moreover, both the simulation and experimental results demonstrate that the meta-imaging camera maintains the capability of providing precise depth information even in the presence of aberrations. Showing the promising compatibility with other point-spread-function engineering methods, we anticipate that the meta-imaging camera may facilitate the advancement of monocular passive depth sensing in various applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyu发布了新的文献求助10
刚刚
斯文败类应助LGX采纳,获得10
刚刚
桂桂完成签到,获得积分10
刚刚
1秒前
无花果应助典雅的俊驰采纳,获得10
1秒前
2秒前
2秒前
烟花应助SCurry3rain采纳,获得30
2秒前
完美世界应助闪闪的飞雪采纳,获得10
2秒前
yangsouth发布了新的文献求助10
3秒前
研友_85YNe8完成签到,获得积分10
3秒前
将夕发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
yyy完成签到 ,获得积分10
6秒前
DG完成签到,获得积分10
6秒前
chai发布了新的文献求助10
8秒前
8秒前
8秒前
yt发布了新的文献求助10
9秒前
五1232发布了新的文献求助10
9秒前
坦率的曲奇完成签到,获得积分10
9秒前
11秒前
12秒前
NOT发布了新的文献求助10
14秒前
15秒前
Archie发布了新的文献求助30
15秒前
平方完成签到,获得积分10
15秒前
cym完成签到,获得积分10
15秒前
Jin完成签到 ,获得积分10
16秒前
77完成签到 ,获得积分10
17秒前
shanshan发布了新的文献求助10
17秒前
18秒前
18秒前
哈哈完成签到,获得积分20
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656742
求助须知:如何正确求助?哪些是违规求助? 4805800
关于积分的说明 15077356
捐赠科研通 4814948
什么是DOI,文献DOI怎么找? 2576219
邀请新用户注册赠送积分活动 1531465
关于科研通互助平台的介绍 1490025