重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Aberration-robust monocular passive depth sensing using a meta-imaging camera

人工智能 计算机科学 计算机视觉 单眼 稳健性(进化) 图像传感器 景深 立体成像 视野 图像分辨率 光学 物理 生物化学 基因 化学
作者
Zhexuan Cao,Ning Li,Zhu Lili,Jiamin Wu,Qionghai Dai,Hui Qiao
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1038/s41377-024-01609-9
摘要

Abstract Depth sensing plays a crucial role in various applications, including robotics, augmented reality, and autonomous driving. Monocular passive depth sensing techniques have come into their own for the cost-effectiveness and compact design, offering an alternative to the expensive and bulky active depth sensors and stereo vision systems. While the light-field camera can address the defocus ambiguity inherent in 2D cameras and achieve unambiguous depth perception, it compromises the spatial resolution and usually struggles with the effect of optical aberration. In contrast, our previously proposed meta-imaging sensor 1 has overcome such hurdles by reconciling the spatial-angular resolution trade-off and achieving the multi-site aberration correction for high-resolution imaging. Here, we present a compact meta-imaging camera and an analytical framework for the quantification of monocular depth sensing precision by calculating the Cramér–Rao lower bound of depth estimation. Quantitative evaluations reveal that the meta-imaging camera exhibits not only higher precision over a broader depth range than the light-field camera but also superior robustness against changes in signal-background ratio. Moreover, both the simulation and experimental results demonstrate that the meta-imaging camera maintains the capability of providing precise depth information even in the presence of aberrations. Showing the promising compatibility with other point-spread-function engineering methods, we anticipate that the meta-imaging camera may facilitate the advancement of monocular passive depth sensing in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小满发布了新的文献求助10
刚刚
1秒前
小蛮样完成签到,获得积分10
1秒前
1秒前
结实砖家完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
余在何完成签到,获得积分10
2秒前
sume24完成签到,获得积分10
3秒前
华仔应助忧虑的访梦采纳,获得10
3秒前
4秒前
看书完成签到,获得积分10
4秒前
77关注了科研通微信公众号
4秒前
6秒前
fuga完成签到,获得积分10
6秒前
6秒前
123完成签到 ,获得积分10
6秒前
梦XING完成签到 ,获得积分10
7秒前
123发布了新的文献求助10
7秒前
复印件完成签到,获得积分10
7秒前
JamesPei应助秀秀采纳,获得10
8秒前
孟冬完成签到 ,获得积分10
8秒前
liu发布了新的文献求助10
8秒前
田様应助守望者采纳,获得30
9秒前
谷大喵唔发布了新的文献求助10
9秒前
Huguizhou发布了新的文献求助10
9秒前
9秒前
11秒前
凄凉山谷的风完成签到,获得积分10
11秒前
linyi完成签到,获得积分20
11秒前
orixero应助song采纳,获得10
11秒前
11秒前
12秒前
12秒前
赘婿应助liuuuuuuuuuuuuu采纳,获得10
12秒前
14秒前
春茶宴关注了科研通微信公众号
14秒前
巍峨发布了新的文献求助10
14秒前
充电宝应助xu采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468049
求助须知:如何正确求助?哪些是违规求助? 4571603
关于积分的说明 14330660
捐赠科研通 4498112
什么是DOI,文献DOI怎么找? 2464315
邀请新用户注册赠送积分活动 1453064
关于科研通互助平台的介绍 1427739