Aberration-robust monocular passive depth sensing using a meta-imaging camera

人工智能 计算机科学 计算机视觉 单眼 稳健性(进化) 图像传感器 景深 立体成像 视野 图像分辨率 光学 物理 生物化学 化学 基因
作者
Zhexuan Cao,Ning Li,Zhu Lili,Jiamin Wu,Qionghai Dai,Hui Qiao
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1038/s41377-024-01609-9
摘要

Abstract Depth sensing plays a crucial role in various applications, including robotics, augmented reality, and autonomous driving. Monocular passive depth sensing techniques have come into their own for the cost-effectiveness and compact design, offering an alternative to the expensive and bulky active depth sensors and stereo vision systems. While the light-field camera can address the defocus ambiguity inherent in 2D cameras and achieve unambiguous depth perception, it compromises the spatial resolution and usually struggles with the effect of optical aberration. In contrast, our previously proposed meta-imaging sensor 1 has overcome such hurdles by reconciling the spatial-angular resolution trade-off and achieving the multi-site aberration correction for high-resolution imaging. Here, we present a compact meta-imaging camera and an analytical framework for the quantification of monocular depth sensing precision by calculating the Cramér–Rao lower bound of depth estimation. Quantitative evaluations reveal that the meta-imaging camera exhibits not only higher precision over a broader depth range than the light-field camera but also superior robustness against changes in signal-background ratio. Moreover, both the simulation and experimental results demonstrate that the meta-imaging camera maintains the capability of providing precise depth information even in the presence of aberrations. Showing the promising compatibility with other point-spread-function engineering methods, we anticipate that the meta-imaging camera may facilitate the advancement of monocular passive depth sensing in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NN应助olekravchenko采纳,获得10
刚刚
刚刚
愉快的月光完成签到,获得积分10
1秒前
1秒前
1秒前
orixero应助赵英哲采纳,获得10
1秒前
2秒前
研友_Z3342Z完成签到,获得积分10
3秒前
3秒前
可爱的函函应助李沫沫采纳,获得20
5秒前
胡十一完成签到,获得积分20
7秒前
wanci应助zhang采纳,获得10
8秒前
NIHAO发布了新的文献求助10
8秒前
8秒前
动听衬衫发布了新的文献求助10
8秒前
大个应助佳佳爱学习采纳,获得30
9秒前
23333驳回了所所应助
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
changping应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
xxszyb应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
菜虚鲲发布了新的文献求助10
12秒前
赵淑敏发布了新的文献求助10
13秒前
14秒前
yiyi完成签到,获得积分10
14秒前
稳重迎荷完成签到 ,获得积分10
15秒前
毅毅子完成签到,获得积分20
15秒前
夏浅完成签到,获得积分10
15秒前
宋兔兔兔兔子完成签到 ,获得积分10
16秒前
16秒前
16秒前
负责小甜瓜完成签到,获得积分10
19秒前
19秒前
科研通AI6应助小云采纳,获得10
20秒前
毅毅子发布了新的文献求助10
21秒前
21秒前
稻草人发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317367
求助须知:如何正确求助?哪些是违规求助? 4459844
关于积分的说明 13876619
捐赠科研通 4349993
什么是DOI,文献DOI怎么找? 2389069
邀请新用户注册赠送积分活动 1383256
关于科研通互助平台的介绍 1352647