协方差
差异(会计)
计算机科学
代表(政治)
人工智能
协方差分析
机器学习
数学
统计
会计
政治
政治学
法学
业务
作者
Azad Singh,Vandan Gorade,Deepak Mishra
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3455337
摘要
Self-supervised learning (SSL) is potentially useful in reducing the need for manual annotation and making deep learning models accessible for medical image analysis tasks. By leveraging the representations learned from unlabeled data, self-supervised models perform well on tasks that require little to no fine-tuning. However, for medical images, like chest X-rays, characterized by complex anatomical structures and diverse clinical conditions, a need arises for representation learning techniques that encode fine-grained details while preserving the broader contextual information. In this context, we introduce MLVICX (Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning), an approach to capture rich representations in the form of embeddings from chest X-ray images. Central to our approach is a novel multi-level variance and covariance exploration strategy that effectively enables the model to detect diagnostically meaningful patterns while reducing redundancy. MLVICX promotes the retention of critical medical insights by adapting global and local contextual details and enhancing the variance and covariance of the learned embeddings. We demonstrate the performance of MLVICX in advancing self-supervised chest X-ray representation learning through comprehensive experiments. The performance enhancements we observe across various downstream tasks highlight the significance of the proposed approach in enhancing the utility of chest X-ray embeddings for precision medical diagnosis and comprehensive image analysis. For pertaining, we used the NIH-Chest X-ray dataset, while for downstream tasks, we utilized NIH-Chest X-ray, Vinbig-CXR, RSNA pneumonia, and SIIM-ACR Pneumothorax datasets. Overall, we observe up to 3% performance gain over SOTA SSL approaches in various downstream tasks. Additionally, to demonstrate the generalizability of the proposed method, we conducted additional experiments on fundus images and observed superior performance on multiple datasets. Codes are available at https://github.com/azad6629/mlvicx/ GitHub.
科研通智能强力驱动
Strongly Powered by AbleSci AI