清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MLVICX: Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning

协方差 差异(会计) 计算机科学 代表(政治) 人工智能 协方差分析 机器学习 数学 统计 会计 政治 政治学 法学 业务
作者
Azad Singh,Vandan Gorade,Deepak Mishra
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3455337
摘要

Self-supervised learning (SSL) is potentially useful in reducing the need for manual annotation and making deep learning models accessible for medical image analysis tasks. By leveraging the representations learned from unlabeled data, self-supervised models perform well on tasks that require little to no fine-tuning. However, for medical images, like chest X-rays, characterized by complex anatomical structures and diverse clinical conditions, a need arises for representation learning techniques that encode fine-grained details while preserving the broader contextual information. In this context, we introduce MLVICX (Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning), an approach to capture rich representations in the form of embeddings from chest X-ray images. Central to our approach is a novel multi-level variance and covariance exploration strategy that effectively enables the model to detect diagnostically meaningful patterns while reducing redundancy. MLVICX promotes the retention of critical medical insights by adapting global and local contextual details and enhancing the variance and covariance of the learned embeddings. We demonstrate the performance of MLVICX in advancing self-supervised chest X-ray representation learning through comprehensive experiments. The performance enhancements we observe across various downstream tasks highlight the significance of the proposed approach in enhancing the utility of chest X-ray embeddings for precision medical diagnosis and comprehensive image analysis. For pertaining, we used the NIH-Chest X-ray dataset, while for downstream tasks, we utilized NIH-Chest X-ray, Vinbig-CXR, RSNA pneumonia, and SIIM-ACR Pneumothorax datasets. Overall, we observe up to 3% performance gain over SOTA SSL approaches in various downstream tasks. Additionally, to demonstrate the generalizability of the proposed method, we conducted additional experiments on fundus images and observed superior performance on multiple datasets. Codes are available at https://github.com/azad6629/mlvicx/ GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
14秒前
CipherSage应助喝奶茶睡不着采纳,获得10
20秒前
42秒前
46秒前
细心的语蓉完成签到,获得积分10
50秒前
完美耦合发布了新的文献求助50
58秒前
1分钟前
清爽明辉发布了新的文献求助10
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
鹏826完成签到 ,获得积分10
2分钟前
九九完成签到,获得积分10
2分钟前
1234567完成签到,获得积分10
3分钟前
英姑应助科研通管家采纳,获得10
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
carrot完成签到 ,获得积分10
5分钟前
woxinyouyou完成签到,获得积分0
5分钟前
5分钟前
科研搬运工完成签到,获得积分10
6分钟前
chi完成签到 ,获得积分10
6分钟前
666完成签到 ,获得积分10
7分钟前
heolmes完成签到 ,获得积分10
7分钟前
经纲完成签到 ,获得积分0
7分钟前
xiao完成签到 ,获得积分10
8分钟前
8分钟前
西红柿不吃皮完成签到 ,获得积分10
8分钟前
半岛岛发布了新的文献求助10
8分钟前
jyy应助科研通管家采纳,获得10
8分钟前
和谐的夏岚完成签到 ,获得积分10
9分钟前
负责冰海完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
传奇3应助喝奶茶睡不着采纳,获得30
10分钟前
HHW完成签到,获得积分10
10分钟前
火箭完成签到,获得积分10
10分钟前
清爽明辉发布了新的文献求助10
10分钟前
Ryoman完成签到,获得积分10
10分钟前
清爽明辉完成签到,获得积分20
10分钟前
烟花应助胖头鱼please采纳,获得10
10分钟前
11分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139615
求助须知:如何正确求助?哪些是违规求助? 2790490
关于积分的说明 7795394
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176