A machine learning-based predictive model for the in-hospital mortality of critically ill patients with atrial fibrillation

病危 心房颤动 阿达布思 接收机工作特性 重症监护室 置信区间 医学 重症监护医学 Boosting(机器学习) 重症监护 机器学习 计算机科学 急诊医学 人工智能 内科学 支持向量机
作者
Yanting Luo,Ruimin Dong,Jinlai Liu,Bingyuan Wu
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:191: 105585-105585 被引量:1
标识
DOI:10.1016/j.ijmedinf.2024.105585
摘要

Atrial fibrillation (AF) is common among intensive care unit (ICU) patients and significantly raises the in-hospital mortality rate. Existing scoring systems or models have limited predictive capabilities for AF patients in ICU. Our study developed and validated machine learning models to predict the risk of in-hospital mortality in ICU patients with AF. Medical Information Mart for Intensive Care (MIMIC)-IV dataset and eICU Collaborative Research Database (eICU-CRD) were analyzed. Among ten classifiers compared, adaptive boosting (AdaBoost) showed better performance in predicting all-cause mortality in AF patients. A compact model with 15 features was developed and validated. Both the all variable and compact models exhibited excellent performance with area under the receiver operating characteristic curves (AUCs) of 1(95%confidence interval [CI]: 1.0–1.0) in the training set. In the MIMIC-IV testing set, the AUCs of the all variable and compact models were 0.978 (95% CI: 0.973–0.982) and 0.977 (95% CI: 0.972–0.982), respectively. In the external validation set, the AUCs of all variable and compact models were 0.825 (95% CI: 0.815–0.834) and 0.807 (95% CI: 0.796–0.817), respectively. An AdaBoost-based predictive model was subjected to internal and external validation, highlighting its strong predictive capacity for assessing the risk of in-hospital mortality in ICU patients with AF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
贤惠的饼干完成签到,获得积分10
1秒前
万物安生完成签到,获得积分10
1秒前
yyyyyy完成签到,获得积分10
2秒前
2秒前
whoami完成签到,获得积分10
2秒前
4秒前
十八楼完成签到,获得积分10
4秒前
4秒前
4秒前
LBX应助沐浴阳光的橙子采纳,获得50
5秒前
huangxiaoniu完成签到,获得积分10
6秒前
早早干饭应助赖道之采纳,获得10
6秒前
6秒前
zhanzhanzhan完成签到,获得积分10
7秒前
mojinzhao完成签到,获得积分10
7秒前
文艺的芫发布了新的文献求助10
8秒前
咩咩羊发布了新的文献求助10
8秒前
Altria完成签到,获得积分10
8秒前
天天快乐应助谦让不二采纳,获得10
8秒前
五虎完成签到,获得积分10
8秒前
坦率的海豚完成签到,获得积分10
8秒前
slby发布了新的文献求助10
9秒前
Rain1god发布了新的文献求助10
9秒前
辛勤香岚完成签到,获得积分10
9秒前
英姑应助ivysci00采纳,获得10
10秒前
CipherSage应助哦豁采纳,获得10
10秒前
11秒前
感动城发布了新的文献求助10
11秒前
qqqqqqy应助冰魄落叶采纳,获得10
12秒前
12秒前
栗子鱼发布了新的文献求助10
12秒前
科研小白完成签到,获得积分10
13秒前
笑点低诗桃完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
淡淡乐巧完成签到 ,获得积分10
14秒前
15秒前
甜美无剑应助清浅采纳,获得20
15秒前
yixing发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124