Substrate-induced hybridization of plasmon modes in the composite nanostructure of nanodisk array/thin film for spectrum modulation

等离子体子 纳米结构 材料科学 基质(水族馆) 表面等离子体激元 表面等离子共振 光电子学 局域表面等离子体子 电介质 纳米技术 联轴节(管道) 薄膜 表面等离子体子 光学 纳米颗粒 物理 海洋学 地质学 冶金
作者
Yuzhang Liang,Shuwen Chu,Xinran Wei,Haonan Wei,Cheng Sun,Yi Han,Peng Wei
出处
期刊:Nanophotonics [De Gruyter]
卷期号:13 (21): 3953-3961
标识
DOI:10.1515/nanoph-2024-0159
摘要

Abstract Hybridization coupling among plasmon modes is an effective approach to manipulate near-field properties thus optical spectral shapes of plasmonic nanostructures. Generally, mode hybridization coupling is achieved by modifying the topography and dimensions of nanostructures themselves, with few concerns about substrate-induced manipulation. Herein, we propose a composite nanostructure consisting of a gold (Au) nanodisk array and a thin Au film supported by a dielectric substrate. In this configuration, both the refractive index of the dielectric substrate and thin gold film’s thickness mediate the interaction of plasmon modes supported by upper and lower interfaces of the composite nanostructure, resulting in two hybridized plasmon modes. We systematically investigate the relationship between optical fields at the top surface of plasmon modes before and after the hybridization coupling. Specifically, the near-field amplitude at the top surface of the unhybridized modes is stronger than that of individual hybridized mode, and lower than the near-field summation of these two hybridized modes. This work not only provides a straightforward strategy for generating two plasmon modes in a nanostructure but also elucidates the variation of the optical field during the hybridization process, which is of crucial significance for applications, such as upconversion enhancement and multi-resonance sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助枫叶采纳,获得10
2秒前
2秒前
Gyrate完成签到,获得积分10
3秒前
李李发布了新的文献求助50
3秒前
dashi完成签到 ,获得积分10
3秒前
无花果应助一天八杯水采纳,获得10
3秒前
3秒前
SS发布了新的文献求助10
4秒前
顺顺发布了新的文献求助10
5秒前
5秒前
5秒前
www发布了新的文献求助10
5秒前
6秒前
6秒前
李繁蕊发布了新的文献求助10
7秒前
暴躁的嘉懿完成签到,获得积分10
7秒前
LZH发布了新的文献求助20
7秒前
领导范儿应助rosexu采纳,获得10
8秒前
华生完成签到,获得积分10
9秒前
9秒前
Miracle关注了科研通微信公众号
9秒前
通~发布了新的文献求助10
10秒前
10秒前
Apple完成签到,获得积分10
10秒前
sunzhiyu233发布了新的文献求助10
11秒前
医学僧发布了新的文献求助30
11秒前
Sheila完成签到 ,获得积分10
11秒前
sweetbearm应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
NN应助科研通管家采纳,获得10
11秒前
12秒前
英姑应助科研通管家采纳,获得10
12秒前
36456657应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
prosperp应助科研通管家采纳,获得20
12秒前
打打应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808