Post‐Lithium Storage—Shaping the Future

电池(电) 储能 锂(药物) 工艺工程 纳米技术 原材料 材料科学 环境经济学 功率(物理) 工程类 医学 化学 物理 有机化学 量子力学 经济 内分泌学
作者
Birgit Esser,Helmut Ehrenberg,Maximilian Fichtner,Axel Groß,Jürgen Janek
出处
期刊:Advanced Energy Materials [Wiley]
被引量:1
标识
DOI:10.1002/aenm.202402824
摘要

Electrochemical Energy Storage is one of the most active fields of current materials research, driven by an ever-growing demand for cost- and resource-effective batteries. The lithium-ion battery (LIB) was commercialized more than 30 years ago and has since become the basis of a worldwide industry, supplying storage capacities of hundreds of GWh. With an increasing fraction of vehicles being "battery electric", and with a growing demand for buffer storage in local and connected power grids, the demand for battery materials grows very fast, and price fluctuations seriously influence the developing battery market.[1] With estimated annual production capacities of 3 TWh by 2030[2, 3] supply chains become increasingly critical, and new economic dependencies show up. Certainly, it is still a major role of electrochemical materials research to further improve the function of LIBs. However, research focusing on alternative battery chemistries and cell concepts as well as on the necessary materials will offer alternatives to the existing and further advancing technology—promising diversified, more sustainable, high-performance storage technologies based on readily available raw materials and green production processes. Clearly, sodium-ion batteries (SIBs) are now advancing to real-life applications, and their development is fast due to the many lessons learned from the build-up of LIB technology.[4] While the LIB market is further maturing, providing premium-type cells comprising nickel manganese cobalt (NMC) cathodes for high-energy and high-power applications and more budget-type cells based on lithium iron phosphate (LFP) cathodes for low-cost batteries, the SIB is entering into the market from the "low-performance" end, competing primarily with LFP-based LIB. The outcome of this competition has not yet been decided, and materials research for SIB is intensifying. Along with these developments, the societal need for sustainable batteries in various fields of application is also growing, together with sector-specific demand, for example, for ultra-safe batteries. This stimulates research into other cell concepts with other mobile ions and other cell reactions. Such "post-lithium" (and "post-sodium") research is transforming more into research for complementary ("side-by-side") technologies that expand the range of possible applications of batteries in general.[5] However, independent from any techno-economic consideration, exploring alternative cell concepts and cell reactions has also a strong and deep-rooted scientific motivation: In chemistry and materials science, understanding chemical trends, deriving overarching theoretical concepts, and gaining deeper knowledge of the role of the different chemical elements in different binding situations has always been at the core of research. In this regard, electrochemical materials research has always been at the forefront in connecting chemical reactivity with the underlying physical world of energetics, that is, thermodynamics, and kinetics. Thermodynamic driving forces can be measured in terms of cell voltages, while reaction rates correspond to electric currents and transferred electric charges. Thus, the framework of electrochemistry provides a uniquely suited field for the study of chemical reactivity and stability in quantitative terms. From this perspective, the exploration of alternative battery cell concepts, relying on elements other than those used in LIBs, such as monovalent ions like potassium (K), fluorine (F), and chlorine (Cl), or on multivalent ions such as magnesium (Mg), calcium (Ca), or aluminum (Al), may not only pave the way to new applications and may ease techno-economic dependencies—it primarily helps to deepen our understanding of electrochemical concepts and their connection with the materials world. In an increasingly electrified world, electrical energy be gained from renewable or nuclear sources, and with further advancing technologies in any respect, electrochemistry and electrochemical materials research will play a key role in the "energy and materials" nexus. Against this background, the collection of invited papers in a joint issue of the Wiley–VCH journals Advanced Energy Materials, ChemSusChem, and Batteries & Supercaps highlights the status of research into post-lithium cell concepts and materials. More than fifty papers on various subjects have been collected and provide an up-to-date source of information on post-lithium research—many of them from the Cluster of Excellence "POLiS" (Post Lithium Storage), funded by the German Research Foundation—DFG. The important role of SIBs and their components is highlighted by quite a large number of papers in the current collection. A deeper understanding of the hard carbon anode and its solid-electrolyte interphase (SEI) in SIBs is provided, for example, by Palanisamy et al. in the article batt.202300482, novel cathode coatings for layered active materials are presented by Brugnetti et al. (batt.202300332), while full SIB cells are analyzed in detail by Stüble et al. (batt.202300375). Whether Na metal anodes with fast plating and stripping kinetics (cf. aenm.202302729 and aenm.202302322) can be safely operated in solid-state cells with -type solid electrolytes, is an open question. The fast progress in the development of SIBs and the related issues of potential mass production is discussed by Sada et al. and Klemens et al in the articles aenm.202302321 and batt.202300291. Not surprisingly, potassium-ion batteries (PIBs) show at the horizon, and a number of papers discuss the corresponding materials challenges, e.g., in hard carbons (aenm.202302647) or cathode materials (aenm.202302961). Obviously, cell concepts with multivalent ions still pose serious barriers on the way to competitive cells, yet a number of papers show attractive paths forward, e.g. by utilizing organic or novel inorganic electrode materials in the case of Mg, Ca, and Al (cf. batt.202300285, batt.202300308, cssc.202300932 and cssc.202301224). Particularly, the transport of multivalent ions in the solid state is still a critical issue and is highlighted by Glaser et al. and Jeschull et al. in the articles aenm.202301980 and aenm.202302745 in the case of Mg ion transport. A novel chloride solid electrolyte with high conductivity is presented by Karkera et al. (aenm.202300982), and a novel concept for organic redox-flow batteries with aqueous electrolytes is reported by Kim et al. (aenm.202302128), and all-organic anionic full cells by Bhosale et al. (cssc.202301143). Not least, in-depth studies with less-conventional techniques used in battery research are presented by Karcher et al. (aenm.202302241), demonstrating the use of microcalorimetry and of tip-enhanced Raman spectroscopy by Dinda et al. (aenm.202302176) in the study of SIBs. This special collection illustrates the scientific progress in multiple aspects, including chloride ion, multivalent, organic, potassium, and sodium batteries, as well as battery production, sustainability, and theoretical studies. These latest ideas and innovations show the way toward a more sustainable energy infrastructure and will trigger the development of new technologies and applications that will power our future. The authors declare no conflict of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉若灵完成签到,获得积分10
3秒前
阿航完成签到,获得积分10
4秒前
李健应助chaserlife采纳,获得10
5秒前
星辰大海应助JXY采纳,获得10
5秒前
斯文败类应助你要学好采纳,获得10
6秒前
Fjj完成签到,获得积分20
9秒前
9秒前
不想取名字完成签到,获得积分10
10秒前
12秒前
12秒前
cach完成签到,获得积分10
13秒前
13秒前
HBXAurora发布了新的文献求助10
14秒前
14秒前
能干砖家完成签到,获得积分10
14秒前
14秒前
偏偏海完成签到 ,获得积分10
15秒前
liuz53发布了新的文献求助10
15秒前
15秒前
xgn完成签到,获得积分10
17秒前
17秒前
一二发布了新的文献求助10
18秒前
YYJ发布了新的文献求助10
19秒前
19秒前
岁月如歌完成签到,获得积分10
20秒前
王森发布了新的文献求助10
20秒前
香蕉觅云应助liuz53采纳,获得10
20秒前
21秒前
Likz完成签到,获得积分10
21秒前
玛卡巴卡发布了新的文献求助10
25秒前
Akim应助一二采纳,获得10
27秒前
DianaRang发布了新的文献求助30
27秒前
叉叉茶完成签到 ,获得积分10
27秒前
科研通AI2S应助HBXAurora采纳,获得10
28秒前
Joy完成签到 ,获得积分10
31秒前
35秒前
情怀应助JXY采纳,获得10
36秒前
芋圆不圆完成签到,获得积分10
41秒前
45秒前
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134969
求助须知:如何正确求助?哪些是违规求助? 2785927
关于积分的说明 7774469
捐赠科研通 2441746
什么是DOI,文献DOI怎么找? 1298163
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825