Making Waves: Intelligent phage cocktail design, a pathway to precise microbial control in water systems

水消毒 控制(管理) 水处理 生化工程 环境科学 环境工程 计算机科学 工程类 人工智能
作者
Bridget Hegarty
出处
期刊:Water Research [Elsevier BV]
卷期号:268: 122594-122594
标识
DOI:10.1016/j.watres.2024.122594
摘要

Current practices in water and wastewater treatment to control unwanted microbes have led to new problems, including health effects from disinfection byproducts, growth of opportunistic pathogens resistant to residual disinfectants (e.g., chlorine), and antibiotic resistance. These challenges are spurring interest in rethinking our practices of microbial control. Simultaneously, advances in molecular biology and computation power are driving renewed interest in using phages (viruses that infect bacteria) to precisely control microbial growth (aka, phage biocontrol). In this Making Waves article, I begin by reviewing the current state of research into phage cocktail design, emphasizing our limited understanding of the features of successful phage cocktails (combinations of multiple types of phages). I describe the state of modeling phage-bacteria interactions and underscore the need for increasing research efforts to predict phage cocktail success, a key gap slowing the application of phage biocontrol. I also detail how research must also focus on techniques for engineering more effective phages to offer a more rapid alternative to phage discovery from natural environments. In this way, phage cocktails comprised of phages with complementary infection strategies may be designed. The final area for increased research effort that I highlight is the need for phage cocktail design to account for possible unintended environmental effects, a risk that is increasingly acknowledged in phage ecology studies but mostly ignored by those developing phage biocontrol technologies. By focusing more research effort towards the areas necessary for intelligent phage cocktail design, we can accelerate the development of phage-based biocontrol in water systems and improve public health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
思源应助陈文娟采纳,获得10
1秒前
阿圆发布了新的文献求助10
2秒前
zhouyan完成签到,获得积分10
3秒前
称心冬云发布了新的文献求助10
3秒前
葳葳完成签到,获得积分10
3秒前
孙勇发布了新的文献求助10
4秒前
4秒前
Uni关注了科研通微信公众号
4秒前
三木足球完成签到,获得积分10
4秒前
研友_燥蝉发布了新的文献求助10
5秒前
joker发布了新的文献求助10
5秒前
LHP完成签到,获得积分10
6秒前
zsm668完成签到,获得积分20
6秒前
10秒前
zhuo完成签到,获得积分10
10秒前
科研废柴发布了新的文献求助10
11秒前
研友_燥蝉完成签到,获得积分10
13秒前
13秒前
16秒前
热心市民应助zjz1采纳,获得10
16秒前
gglp完成签到 ,获得积分10
18秒前
dawn发布了新的文献求助10
18秒前
18秒前
田様应助jitianxing采纳,获得10
19秒前
CikY完成签到 ,获得积分10
19秒前
斯文败类应助Yaoz采纳,获得10
20秒前
小卫卫发布了新的文献求助10
21秒前
22秒前
22秒前
39完成签到,获得积分0
23秒前
SciGPT应助冰柠檬采纳,获得10
23秒前
123456完成签到 ,获得积分10
24秒前
Lea完成签到,获得积分10
24秒前
脑洞疼应助辰123采纳,获得10
24秒前
Wayne完成签到,获得积分10
24秒前
exijiedewo关注了科研通微信公众号
24秒前
Ava应助樱桃小王子采纳,获得10
25秒前
852应助樱桃小王子采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020