亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unlocking Potential Catalysts: A Machine Learning Approach with Bayesian and Regression Models

机器学习 贝叶斯概率 计算机科学 人工智能 回归 回归分析 统计 数学
作者
Chandra Chowdhury
出处
期刊:ChemistrySelect [Wiley]
卷期号:9 (37)
标识
DOI:10.1002/slct.202400883
摘要

Abstract Due to their excellent catalytic efficiency, endurance, adaptability, and unusual structure, single‐atom alloys are an important category of materials with huge potential for efficiently utilising rare and costly metals in catalytic applications. Since no two of these materials are alike, designing a catalyst for each presents its own set of special challenges. The development of catalysts can be sped up with the use of machine learning, however conventional machine learning approaches frequently necessitate large datasets and costly feature engineering. In addition, these approaches frequently have difficulty juggling competing aims and constraints as they expand their search space. This research makes use of Bayesian optimisation (BO) to help in the identification of effective catalysts. Even with as few as 5 starting data points from costly density functional theory (DFT) computations results, our BO workflow is able to quickly and accurately discover the best single‐atom alloy surfaces. Not only that for the applicability of our model on other systems, we have chosen dataset comprises transition metal surfaces as well and found suitable performances which further validates the universality of our model. Our BO model outperforms a random search technique on many different adsorption systems by making use of simple, easily accessible features. Apart from BO, we have also designed other regressor models for searching the best catalyst and interestingly we found that for a small sample size where generating data is very difficult, K‐Nearest Neighbour regressor (KNR) outperforms BO. This research not only unlocks the potential of this BO as well as regressor models in catalysis research but also lays down a robust foundation for future work aiming to optimize material selection based on adsorption characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Koala04完成签到,获得积分10
15秒前
22秒前
28秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
闪明火龙果完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
今后应助rebeycca采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
AliEmbark完成签到,获得积分10
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
VDC应助科研通管家采纳,获得30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
抹不掉的记忆完成签到,获得积分10
5分钟前
Swear完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Endless完成签到,获得积分10
5分钟前
安详的尔岚完成签到,获得积分10
5分钟前
nenoaowu发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457