Unlocking Potential Catalysts: A Machine Learning Approach with Bayesian and Regression Models

机器学习 贝叶斯概率 计算机科学 人工智能 回归 回归分析 统计 数学
作者
Chandra Chowdhury
出处
期刊:ChemistrySelect [Wiley]
卷期号:9 (37)
标识
DOI:10.1002/slct.202400883
摘要

Abstract Due to their excellent catalytic efficiency, endurance, adaptability, and unusual structure, single‐atom alloys are an important category of materials with huge potential for efficiently utilising rare and costly metals in catalytic applications. Since no two of these materials are alike, designing a catalyst for each presents its own set of special challenges. The development of catalysts can be sped up with the use of machine learning, however conventional machine learning approaches frequently necessitate large datasets and costly feature engineering. In addition, these approaches frequently have difficulty juggling competing aims and constraints as they expand their search space. This research makes use of Bayesian optimisation (BO) to help in the identification of effective catalysts. Even with as few as 5 starting data points from costly density functional theory (DFT) computations results, our BO workflow is able to quickly and accurately discover the best single‐atom alloy surfaces. Not only that for the applicability of our model on other systems, we have chosen dataset comprises transition metal surfaces as well and found suitable performances which further validates the universality of our model. Our BO model outperforms a random search technique on many different adsorption systems by making use of simple, easily accessible features. Apart from BO, we have also designed other regressor models for searching the best catalyst and interestingly we found that for a small sample size where generating data is very difficult, K‐Nearest Neighbour regressor (KNR) outperforms BO. This research not only unlocks the potential of this BO as well as regressor models in catalysis research but also lays down a robust foundation for future work aiming to optimize material selection based on adsorption characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
白真帅发布了新的文献求助10
2秒前
lovein发布了新的文献求助10
3秒前
wanci应助Ship采纳,获得10
3秒前
3秒前
Phoenix完成签到,获得积分10
3秒前
xiaomijiaAK发布了新的文献求助10
4秒前
slf完成签到,获得积分10
4秒前
小月完成签到,获得积分10
4秒前
4秒前
英俊的铭应助沐曦采纳,获得10
5秒前
Aries完成签到,获得积分10
5秒前
5秒前
5秒前
伶俐剑心发布了新的文献求助10
8秒前
皮卡丘的夏天完成签到,获得积分10
9秒前
Zhouzhou应助Bingtao_Lian采纳,获得10
9秒前
朱荧荧发布了新的文献求助10
9秒前
小月发布了新的文献求助10
9秒前
愉快的擎苍完成签到,获得积分10
12秒前
fang发布了新的文献求助10
12秒前
hello_25baby完成签到,获得积分10
12秒前
阔达故事完成签到,获得积分10
13秒前
sje完成签到 ,获得积分10
14秒前
111发布了新的文献求助10
15秒前
上官若男应助富有的酒窝采纳,获得10
15秒前
只想睡大觉完成签到,获得积分10
17秒前
17秒前
听风完成签到 ,获得积分10
17秒前
哈哈哈完成签到,获得积分10
17秒前
天天快乐应助博士二三事采纳,获得30
18秒前
英俊的铭应助阳光的伊采纳,获得10
18秒前
20秒前
立军发布了新的文献求助10
21秒前
21秒前
小惊麟完成签到,获得积分10
22秒前
22秒前
23秒前
111完成签到,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312100
求助须知:如何正确求助?哪些是违规求助? 2944743
关于积分的说明 8521216
捐赠科研通 2620426
什么是DOI,文献DOI怎么找? 1432831
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650106