Unlocking Potential Catalysts: A Machine Learning Approach with Bayesian and Regression Models

机器学习 贝叶斯概率 计算机科学 人工智能 回归 回归分析 统计 数学
作者
Chandra Chowdhury
出处
期刊:ChemistrySelect [Wiley]
卷期号:9 (37)
标识
DOI:10.1002/slct.202400883
摘要

Abstract Due to their excellent catalytic efficiency, endurance, adaptability, and unusual structure, single‐atom alloys are an important category of materials with huge potential for efficiently utilising rare and costly metals in catalytic applications. Since no two of these materials are alike, designing a catalyst for each presents its own set of special challenges. The development of catalysts can be sped up with the use of machine learning, however conventional machine learning approaches frequently necessitate large datasets and costly feature engineering. In addition, these approaches frequently have difficulty juggling competing aims and constraints as they expand their search space. This research makes use of Bayesian optimisation (BO) to help in the identification of effective catalysts. Even with as few as 5 starting data points from costly density functional theory (DFT) computations results, our BO workflow is able to quickly and accurately discover the best single‐atom alloy surfaces. Not only that for the applicability of our model on other systems, we have chosen dataset comprises transition metal surfaces as well and found suitable performances which further validates the universality of our model. Our BO model outperforms a random search technique on many different adsorption systems by making use of simple, easily accessible features. Apart from BO, we have also designed other regressor models for searching the best catalyst and interestingly we found that for a small sample size where generating data is very difficult, K‐Nearest Neighbour regressor (KNR) outperforms BO. This research not only unlocks the potential of this BO as well as regressor models in catalysis research but also lays down a robust foundation for future work aiming to optimize material selection based on adsorption characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮白山完成签到 ,获得积分10
4秒前
12秒前
华仔应助xinxinxin采纳,获得10
12秒前
13秒前
香蕉冬云完成签到 ,获得积分10
14秒前
14秒前
MchemG应助ho采纳,获得30
16秒前
w0304hf完成签到,获得积分10
22秒前
星川完成签到,获得积分10
25秒前
jiaozitop完成签到,获得积分10
25秒前
本本完成签到 ,获得积分10
27秒前
zjy完成签到,获得积分10
33秒前
甜蜜耳机完成签到 ,获得积分10
33秒前
MchemG应助ho采纳,获得30
39秒前
wing完成签到 ,获得积分10
39秒前
浮游应助猪猪hero采纳,获得10
41秒前
mafukairi应助猪猪hero采纳,获得10
41秒前
风中冰香应助猪猪hero采纳,获得10
41秒前
santory应助猪猪hero采纳,获得10
41秒前
彭于晏应助猪猪hero采纳,获得10
41秒前
浮游应助猪猪hero采纳,获得10
42秒前
wanci应助猪猪hero采纳,获得30
42秒前
42秒前
42秒前
绿鬼蓝完成签到 ,获得积分10
43秒前
47秒前
猪猪hero发布了新的文献求助30
51秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
大模型应助科研通管家采纳,获得10
53秒前
小离应助科研通管家采纳,获得10
53秒前
LPPQBB应助科研通管家采纳,获得150
53秒前
斯文败类应助科研通管家采纳,获得10
53秒前
53秒前
缓慢耳机完成签到,获得积分20
56秒前
xiaofenzi完成签到,获得积分10
59秒前
1分钟前
Johnlian完成签到 ,获得积分10
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
南风完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304275
求助须知:如何正确求助?哪些是违规求助? 4450880
关于积分的说明 13849976
捐赠科研通 4337819
什么是DOI,文献DOI怎么找? 2381673
邀请新用户注册赠送积分活动 1376668
关于科研通互助平台的介绍 1343751