Unlocking Potential Catalysts: A Machine Learning Approach with Bayesian and Regression Models

机器学习 贝叶斯概率 计算机科学 人工智能 回归 回归分析 统计 数学
作者
Chandra Chowdhury
出处
期刊:ChemistrySelect [Wiley]
卷期号:9 (37)
标识
DOI:10.1002/slct.202400883
摘要

Abstract Due to their excellent catalytic efficiency, endurance, adaptability, and unusual structure, single‐atom alloys are an important category of materials with huge potential for efficiently utilising rare and costly metals in catalytic applications. Since no two of these materials are alike, designing a catalyst for each presents its own set of special challenges. The development of catalysts can be sped up with the use of machine learning, however conventional machine learning approaches frequently necessitate large datasets and costly feature engineering. In addition, these approaches frequently have difficulty juggling competing aims and constraints as they expand their search space. This research makes use of Bayesian optimisation (BO) to help in the identification of effective catalysts. Even with as few as 5 starting data points from costly density functional theory (DFT) computations results, our BO workflow is able to quickly and accurately discover the best single‐atom alloy surfaces. Not only that for the applicability of our model on other systems, we have chosen dataset comprises transition metal surfaces as well and found suitable performances which further validates the universality of our model. Our BO model outperforms a random search technique on many different adsorption systems by making use of simple, easily accessible features. Apart from BO, we have also designed other regressor models for searching the best catalyst and interestingly we found that for a small sample size where generating data is very difficult, K‐Nearest Neighbour regressor (KNR) outperforms BO. This research not only unlocks the potential of this BO as well as regressor models in catalysis research but also lays down a robust foundation for future work aiming to optimize material selection based on adsorption characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Thor发布了新的文献求助10
刚刚
1秒前
1秒前
阿巴阿哲完成签到,获得积分10
1秒前
斯文败类应助Tiffany采纳,获得10
1秒前
两栖玩家完成签到 ,获得积分10
1秒前
任性白卉完成签到 ,获得积分10
2秒前
张丫丫发布了新的文献求助10
2秒前
111完成签到,获得积分10
2秒前
2秒前
CipherSage应助鑫鑫采纳,获得10
2秒前
文艺的曼柔完成签到 ,获得积分10
2秒前
2秒前
传奇3应助Mansis采纳,获得10
2秒前
东木应助风清扬采纳,获得100
3秒前
快乐的海亦完成签到,获得积分20
4秒前
南宫清涟完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
灰灰完成签到 ,获得积分10
6秒前
maomao完成签到,获得积分10
6秒前
6秒前
楚舜华完成签到,获得积分10
6秒前
7秒前
111发布了新的文献求助10
7秒前
7秒前
Jess完成签到,获得积分10
8秒前
木心应助南宫清涟采纳,获得20
8秒前
橙色小瓶子完成签到,获得积分10
8秒前
8秒前
Michael_li完成签到,获得积分10
8秒前
领导范儿应助A2150530290采纳,获得10
8秒前
跳跃毒娘发布了新的文献求助10
8秒前
深情安青应助yn采纳,获得10
9秒前
9秒前
9秒前
六便士在攒完成签到,获得积分10
9秒前
黑加仑发布了新的文献求助10
9秒前
SciGPT应助hanzhou1314采纳,获得30
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582