PDNAPred: Interpretable prediction of protein-DNA binding sites based on pre-trained protein language models

计算生物学 自然语言处理 蛋白质结构预测 人工智能 计算机科学 生物 蛋白质结构 生物化学
作者
Lingrong Zhang,Taigang Liu
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:: 136147-136147 被引量:1
标识
DOI:10.1016/j.ijbiomac.2024.136147
摘要

Protein-DNA interactions play critical roles in various biological processes and are essential for drug discovery. However, traditional experimental methods are labor-intensive and unable to keep pace with the increasing volume of protein sequences, leading to a substantial number of proteins lacking DNA-binding annotations. Therefore, developing an efficient computational method to identify protein-DNA binding sites is crucial. Unfortunately, most existing computational methods rely on manually selected features or protein structure information, making these methods inapplicable to large-scale prediction tasks. In this study, we introduced PDNAPred, a sequence-based method that combines two pre-trained protein language models with a designed CNN-GRU network to identify DNA-binding sites. Additionally, to tackle the issue of imbalanced dataset samples, we employed focal loss. Our comprehensive experiments demonstrated that PDNAPred significantly improved the accuracy of DNA-binding site prediction, outperforming existing state-of-the-art sequence-based methods. Remarkably, PDNAPred also achieved results comparable to advanced structure-based methods. The designed CNN-GRU network enhances its capability to detect DNA-binding sites accurately. Furthermore, we validated the versatility of PDNAPred by training it on RNA-binding site datasets, showing its potential as a general framework for amino acid binding site prediction. Finally, we conducted model interpretability analysis to elucidate the reasons behind PDNAPred's outstanding performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiuqiu完成签到,获得积分10
1秒前
小飞侠07完成签到,获得积分10
2秒前
募股小发布了新的文献求助10
2秒前
快乐的完成签到 ,获得积分10
3秒前
3秒前
大梦想家完成签到,获得积分10
5秒前
王鹏飞应助渊思采纳,获得10
5秒前
酷波er应助牛牛眉目采纳,获得10
6秒前
冷冷发布了新的文献求助10
9秒前
10秒前
好的哥完成签到,获得积分10
13秒前
lzx完成签到,获得积分10
14秒前
FashionBoy应助地泽万物采纳,获得10
15秒前
小豆豆应助李帅采纳,获得10
16秒前
kcnco完成签到,获得积分20
18秒前
汪汪完成签到,获得积分10
20秒前
20秒前
爱撒娇的自中完成签到,获得积分10
21秒前
23秒前
24秒前
wwww发布了新的文献求助10
25秒前
zhuo完成签到,获得积分10
25秒前
25秒前
斯文败类应助Sirius潘圈圈采纳,获得10
26秒前
26秒前
xqxqxqxqxqx关注了科研通微信公众号
26秒前
念姬发布了新的文献求助10
27秒前
27秒前
发发完成签到 ,获得积分10
29秒前
xuxuxuxuxu发布了新的文献求助10
30秒前
小马甲应助牛牛眉目采纳,获得10
31秒前
谦让的莆发布了新的文献求助10
32秒前
李帅完成签到,获得积分20
33秒前
涂涂完成签到 ,获得积分10
34秒前
meier1206完成签到 ,获得积分10
36秒前
沧笙踏歌应助tingalan采纳,获得10
37秒前
Alexbirchurros完成签到 ,获得积分10
39秒前
甜桃完成签到,获得积分10
39秒前
可乐完成签到,获得积分10
41秒前
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511740
关于积分的说明 11159404
捐赠科研通 3246305
什么是DOI,文献DOI怎么找? 1793370
邀请新用户注册赠送积分活动 874364
科研通“疑难数据库(出版商)”最低求助积分说明 804357